

K.L.N. COLLEGE OF ENGINEERING POTTAPALAYAM - 630 612 (11KM from Madurai City) SIVAGANGAI DISTRICT, TAMILNADU, INDIA

(Sponsored by K.L.N. Sourashtra College of Engineering Council)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Approved by AICTE, New Delhi

Permanently Affiliated to Anna University, Chennai

Accredited by NBA up to 30.06.2019

Research Centre of Anna University

STUDENTS HAND BOOK

For B.E. – EEE

III – Semester

Odd Semester 2017 – 2018

K.L.N. COLLEGE OF ENGINEERING

Department of Electrical and Electronics Engineering

STUDENTS HAND BOOK

B.E. – EEE – III – Semester – Odd Semester of 2017 – 2018

This book contains the following:

S. NO	CONTENTS	PAGE NO.
1	Vision and Mission of the College and Department	3
2	Program Educational Objectives, Program Specific Outcomes, Program	4
	Outcomes.	
3	Outcome Based Education, Benefits and Significance of accreditation.	6
4	Engineering Ethics.	7
5	Blooms Taxonomy.	9
6	Academic Calendar – 2017 – 2018 (Odd semester).	10
7	Class Time Table.	11
8	B.E. – EEE – Syllabus – III Semester.	12
9	Lecture Schedule, Tutorial, Assignment questions.	21
10	Anna University question papers (Nov/Dec-16 & Apr/May-17).	73
11	Anna University - Malpractices and Punishment in University Examinations	102
12	Students Leave application Form	105
13	Norms for attending workshop / seminar/ technical symposium/ conference /	106
	technical contest etc.	
14	OD requisition form	107
15	About the College and Department	108
16	Faculty List, Mobile number, Mail ID	112
17	Placement activity reminder	113
18	All India Installed Capacity (in MW) of Power Stations	114
19	ATI Chennai : Annual Training calendar 2017 – 2018 (Short Term Skill	115
	Training Programme)	
20	List of PSUs through GATE Exam	117
21	Lists of TOP 10 software companies to offer jobs in India	118
22	Lists of TOP 10 core companies to offer Electrical jobs	119
23	Lists of core companies to offer Electrical jobs in India	120
24	Green Energy Companies in India	126
25	Internationally renowned MNC's to offer electrical jobs	127
26	Top core companies in India to offer electrical jobs	127
27	Training and Placement plan	128
28	A ready reckoner for enhancing placement activities	131

K.L.N. COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

VISION AND MISSION OF THE COLLEGE

VISION:

To become a Premier Institute of National Repute by Providing Quality Education, Successful Graduation, Potential Employability and Advanced Research & Development through Academic Excellence.

MISSION:

To Develop and Make Students Competent Professional in the Dynamic Environment in the field of Engineering, Technology and Management by emphasizing Research, Social Concern and Ethical Values through Quality Education System.

VISION AND MISSION OF THE DEPARTMENT

VISION:

To become a high standard of excellence in Education, Training and Research in the field of Electrical & Electronics Engineering and allied applications.

MISSION:

To produce excellent, innovative and Nationalistic Engineers with Ethical Values and to advance in the field of Electrical & Electronics Engineering and allied areas.

B.]	E EEE	M.E PSE		Ph.D.			
V. C	1994, with an intake of 40	2004, with an intake of 18		Year of Recognition as Research Centre	2012		
Year of start & History of Intake	1996, with an intake of 60	Year of start & History of Intake					
	2002, with an intake of 90		- 2012 with an	First Renewal	2015, upto December 2018		
	2011, with an intake of 120						
Both UG & PG programs are permanently affiliated to Anna University, Chennai.							
Accreditation status							
First Accredit	ation Second Accr	editation Thi	rd Accreditation	Fou	urth Accreditation		

HISTORY OF THE DEPARTMENT

Accreditation status							
First Accreditation	Second Accreditation	Third Accreditation	Fourth Accreditation				
3 YEARS W.E.F. 19-3-2004	3 YEARS W.E.F. 19-7-2008	2 YEARS W.E.F. 05-08-2013	Academic Year 2016-17,2017-18 and 2018-19, i.e., upto 30-06-2019				

FACULTY PROFILE as on July 2017

Ph.D's	Doing Ph.D	М.Е.
10	8	13

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

The Educational Objectives of the Electrical and Electronics Engineering (EEE) Programme represent major accomplishments that we expect our graduates to achieve after three to five years of graduation. More specifically our graduates are expected:

PEO1: to excel in industrial or graduate work in Electrical and Electronics Engineering and allied fields **PEO2:** to practice their Professions conforming to Ethical Values and Environmentally friendly policies **PEO3:** to work in international and multi-disciplinary Environments

PEO4: to successfully adapt to evolving Technologies and stay current with their Professions

PROGRAM SPECIFIC OUTCOMES (PSOs)

Electrical and Electronics Engineering Graduates will be able to:

PSO1:

Apply the fundamentals of mathematics, science and engineering knowledge to identify, formulate, design and investigate complex engineering problems of electric circuits, analog and digital electronic circuits, electrical machines and power systems.

PSO2:

Apply appropriate techniques and modern Engineering hardware and software tools in power systems to engage in life- long learning and to successfully adapt in multi disciplinary environments. **PSO3:**

Understand the impact of Professional Engineering solutions in societal and environmental context, commit to professional ethics and communicate effectively.

PROGRAM OUTCOMES (POs)

Electrical and Electronics Engineering Graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

OUTCOME BASED EDUCATION (OBE)

In a traditional education system, students are given grades and rankings compared to each other. Content and performance expectations are based primarily on what was taught in the past to students of a given age. The goal of traditional education was to present the knowledge and skills of an older generation to the new generation of students, and to provide students with an environment in which to learn. The process paid little attention (beyond the classroom teacher) to whether or not students learn any of the material.

An outcome is a culminating demonstration of learning; it is what the student should be able to do, at the end of a course/program, in-terms of the knowledge, skill and behavior.

Outcome-based education is an approach to education in which decisions about the curriculum are driven by the exit learning outcomes that the students should display at the end of the course. In outcome-based education, product defines process. Outcome-based education can be summed up as results-oriented thinking and is the opposite of input-based education where the emphasis is on the educational process. Outcome-based education promotes fitness for practice and education for capability.

BENEFITS AND SIGNIFICANCE OF ACCREDITATION

The process of accreditation helps in realizing a number of benefits, such as:

- Helps the Institution to know its strengths, weaknesses and opportunities
- Initiates Institutions into innovative and modern methods of pedagogy
- Gives Institutions a new sense of direction and identity
- Provides society with reliable information on quality of education offered
- Promotes intra and inter-Institutional interactions

Accreditation signifies different things to different stakeholders. These are:

Benefits to Institutions

Accreditation is market-driven and has an international focus. It assesses the characteristics of an Institution and its programmes against a set of criteria established by National Board of Accreditation. NBA's key objective is to contribute to the significant improvement of the Institutions involved in the accreditation process. Accreditation process quantifies the strengths, weaknesses in the processes adopted by the Institution and provides directions and opportunities for future growth. NBA provides a quality seal or label that differentiates the Institutions from its peers at the national level. This leads to a widespread recognition and greater appreciation of the brand name of Institutions and motivates the Institutions to strive for more.

Benefits to Students

Students studying in NBA accredited Institutions can be assured that they will receive education which is a balance between high academic quality and professional relevance and that the needs of the corporate world are well integrated into programmes, activities and processes. It signifies that he has entered the portals of an Institution, which has the essential and desirable features of quality professional education.

Benefits to Employers

Accreditation assures prospective employers that students come from a programme where the content and quality have been evaluated, satisfying established standards. It also signifies that the students passing out have acquired competence based on well established technical inputs.

Benefits to the Public

Accredited status represents the commitment of the programme and the Institution to quality and continuous improvement.

Catalyst for International Accreditations

Due to accreditation from NBA, the Institution's systems and procedures get aligned with the Institution's Mission and Vision. All essential prerequisites for international accreditation are included in the accreditation process of NBA. Therefore, NBA acts as a catalyst for the Institutions planning to acquire International Accreditation.

Benefits to Industry and Infrastructure Providers

It signifies identification of quality of Institutional capabilities, skills and knowledge.

Benefits to Parents

It signifies that their ward goes through a teaching-learning environment as per accepted good practices.

Benefits to Alumni

It reassures alumni that alumni are products of an institute with a higher standing in terms of learning.

Benefits to Country

Accreditation helps in gaining confidence of stakeholders and in giving a strong message that as a country, our technical manpower is of international standards and can be very useful in enhancing the global mobility for our technical manpower.

ENGINEERING ETHICS

Engineering Ethics is the set of rules and guidelines that engineers adhere to as a moral obligation to their profession and to the world. Engineering is a professional career that impact lives. When ethics is not followed, disaster often occurs; these disasters not only include huge monetary costs and environmental impacts, but also often result in the loss of human life. Engineering Ethics applies to every engineer and is very important.

The National Society of Professional Engineers (NSPE) decides the overall standards and codes of ethics for all the engineering professions. The Preamble of the NSPE *Code of Conduct for Engineers* (2007) states: "Engineers shall at all times recognize that their primary obligation is to protect the safety, health, property, and welfare of the public. If their professional judgment is overruled under circumstances where the safety, health, property, or welfare of the public are endangered, they shall notify their employer or client and such other authority as may be appropriate."

Electrical Engineering Ethics

Electrical Engineering is a type of engineering profession that deals with the creation of better electronics. Since our society is heading towards an era of technology, where all members of society will be affected, it is especially important for electrical engineers to follow a code of engineering ethics. For electrical engineers, an important set of guidelines is the Electrical Engineering Code of Ethics, published by IEEE.

IEEE code of Ethics

We, the members of the IEEE, in recognition of the importance of our technologies in affecting the quality of life throughout the world, and in accepting a personal obligation to our profession, its members and the communities we serve, do hereby commit ourselves to the highest ethical and professional conduct and agree:

- 1. to accept responsibility in making decisions consistent with the safety, health, and welfare of the public, and to disclose promptly factors that might endanger the public or the environment;
- 2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected parties when they do exist;
- 3. to be honest and realistic in stating claims or estimates based on available data;
- 4. to reject bribery in all its forms;
- 5. to improve the understanding of technology; its appropriate application, and potential consequences;
- 6. to maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations;
- 7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others;
- 8. to treat fairly all persons and to not engage in acts of discrimination based on race, religion, gender, disability, age, national origin, sexual orientation, gender identity, or gender expression;
- 9. to avoid injuring others, their property, reputation, or employment by false or malicious action;
- 10. to assist colleagues and co-workers in their professional development and to support them in following this code of ethics.

Engineering Ethics in College/Education

The main engineering ethics problem that college students are face with is academic integrity. Academic integrity can show itself in the form of cheating by copying someone's work, intentional cheating, plagiarism, and/or self-plagiarism.

However, professional ethics is something that can be learned even when it conflicts with personal ethics, as for example, a situation where you are personally okay with building a product that can harm the environment, yet save lives. You can learn professional ethics and realize that something that is harmful to the environment is not okay. Ethics codes can even help you see the bigger picture. For example, in the previous scenario, these codes can help you re-evaluate your ethics and realize that something that is harmful to the environment will eventually be harmful to the people around you and yourself.

Engineering Ethics in the Professional World

In the professional world, ethical engineering problems come up in many cases. One of these includes the case of a professional using someone else's work that is published in the widespread market of publication. Another is the case of a professional using someone else's work that is not published yet and stealing their idea. Engineers who have good engineering ethics often have a good sense of the value of life. They don't hesitate to admit that they made a mistake because they know that the cost of not owning up to your mistakes can have disastrous consequences. It might even cost a human life.

Engineering Ethics in Companies

Not only do individual engineers have to be conscious of engineering ethics, but also companies. Companies have to be aware of their Corporate Social Responsibility and Environmental Responsibility. Corporate Social Responsibility is a company's responsibility to give back to the community that they profit from and to behave ethically so that both they and their community can benefit. Environmental Responsibility is a business's initiative to leave the environment (where it is taking its resources from) the same, if not better, that it is found it.

BLOOM'S TAXONOMY

Definitions of the different levels of thinking skills in Bloom's taxonomy

1. **Remember** – recalling relevant terminology, specific facts, or different procedures related to information and/or course topics. At this level, a student can remember something, but may not really understand it.

2. **Understand** – the ability to grasp the meaning of information (facts, definitions, concepts, etc.) that has been presented.

3. **Apply** – being able to use previously learned information in different situations or in problem solving.

4. **Analyze** – the ability to break information down into its component parts. Analysis also refers to the process of examining information in order to make conclusions regarding cause and effect, interpreting motives, making inferences, or finding evidence to support statements/arguments.

5. **Evaluate** – being able to judge the value of information and/or sources of information based on personal values or opinions.

6. **Create** – the ability to creatively or uniquely apply prior knowledge and/or skills to produce new and original thoughts, ideas, processes, etc. At this level, students are involved in creating their own thoughts an ideas.

REMEMBER	UNDERSTAND	APPLY	ANALYZE	EVALUATE	CREATE
Count	Associate	Add	Analyze	Appraise	Categorize
Define	Compute	Apply	Arrange	Assess	Combine
Describe	Convert	Calculate	Breakdown	Compare	Compile
Draw	Defend	Change	Combine	Conclude	Compose
Identify	Discuss	Classify	Design	Contrast	Create
Label	Distinguish	Complete	Detect	Criticize	Drive
List	Estimate	Compute	Develop	Critique	Design
Match	Explain	Demonstrate	Diagram	Determine	Devise
Name	Extend	Discover	Differentiate	Grade	Explain
Outline	Extrapolate	Divide	Discriminate	Interpret	Generate
Point	Generalize	Examine	Illustrate	Judge	Group
Quote	Give	Graph	Infer	Justify	Integrate
Read	examples	Interpolate	Outline	Measure	Modify
Recall	Infer	Manipulate	Point out	Rank	Order
Recite	Paraphrase	Modify	Relate	Rate	Organize
Recognize	Predict	Operate	Select	Support	Plan
Record	Rewrite	Prepare	Separate	Test	Prescribe
Repeat	Summarize	Produce	Subdivide	1 Contractor	Propose
Reproduce		Show	Utilize		Rearrange
Select		Solve			Reconstruct
State Write		Subtract			Related
		Translate			Reorganize
		Use			Revise
		1.47:57.23			Rewrite
					Summarize
					Transform
					Specify

List of Action Words Related to Critical Thinking Skills

K.L.N.COLLEGE OF ENGINEERING, POTTAPALAYAM - 630 612

ACADEMIC CALENDAR - ODD Semester of 2017 - 2018.

UG & PG COURSES – III, V, VII SEMESTER – SUMMARY (Revised)

S.No	Date	Programme / Events	Day
		June 2017	
1.	12.06.2017 (Mon)	Student development and training programmes :	
1.	12.00.2017 (1001)	(12 th June- 24 th June 2017) - Departments	
2.	19.06.2017 (Mon)	Faculty Meeting - I	
3.	21.06.2017(Wed)	Reopening Day - III, V&VII Semester UG classes	01
0.	2110012017(1100)	Class Committee Meeting - I	01
4.	22.06.2017 (Thu)	Student Counsellor Meeting – I	02
5.	26.06.2017 (Mon)	Ramzan – Holiday	
6.	29.06.2017 (Thu)	Grievance redressal Committee Meeting	07
7.	30.06.2017(Fri)	IIPC & IDCA review meeting-I	08
	· · · · ·	July 2017	
8.	03.07.2017 (Mon)	Commencement of Classes – III & V Semester M.E, MBA & MCA Courses	09
9.	12.07.2017 (Wed)	Class Test-I- $(12^{th} - 19^{th} \text{ July 2017})$	17
10.	24.07.2017 (Mon)	Anti-Ragging Committee Meeting	26
11.	27.07.2017 (Thu)	Faculty Meeting - II	29
12.	31.07.2017 (Mon)	$CIT - I - 31^{st}$ July $- 07^{th}$ August 2017	31
		August 2017	
13.	01.08.2017(Tue)	Commencement of Classes-First year B.E./B.Tech.	32
14.	08.08.2017 (Tue)	Remedial / Retest Classes	37
15.	14.08.2017 (Mon)	Krishna Jeyanthi – Holiday	
16.	15.08.2017(Tue)	Independence Day – Holiday	
17.	18.08.2017 (Fri)	Student Counsellor Meeting – II	44
18.	21.08.2017 (Mon)	Class Test-II- $21^{st} - 28^{th}$ Aug 2017.	45
		Class Committee Meeting - II	
19.	25.08.2017 (Fri)	Vinayagar Chathurthi – Holiday	
20.	26.08.2017 (Sat)	Parents – Teachers Meeting	49
		September 2017	
21.	02.09.2017 (Sat)	Bakrid – Holiday	
22.	04.09.2017 (Mon)	Faculty Meeting - III	55
23.	11.09.2017 (Mon)	CIT – II– 11 th – 18 th Sep 2017.	61
24.	25.09.2017 (Mon)	Model Practical Examinations 25 th –28 th Sep. 2017.	72
25.	28.09.2017 (Thu)	NBA – CO attainment – Even Semester of 2016 – 2017 - Finalization	75
26.	29.09.2017 (Fri)	Ayutha Pooja- Holiday	
27.	30.09.2017 (Sat)	Vijaya Thasami – Holiday	
		October 2017	
28.	01.10.2017 (Sun)	Moharam - Holiday	
20.	02.10.2017 (Mon)	Gandhi Jeyanthi - Holiday	
30.	03.10.2017 (Tue)	Class Test- III - 3 rd -5 th Oct 2017	76
50.	05.10.2017 (1uc)	Students feedback on faculty, college facility, Course Outcome Survey	70
31.	05.10.2017 (Thu)	Class Committee Meeting - III	78
32.	06.10.2017 (Fri)	Faculty meeting - IV	78
33.	09.10.2017 (Mon)	Anna University Practical Examinations – Tentative – Slot – I-Tentative	80
34.	13.10.2017 (Fri)	Model Theory Examinations $(14^{th} - 23^{rd} \text{ Oct } 2017)$	84
35.	18.10.2017 (Wed)	Deepavali – Holiday	
36.	19.10.2017 (Wed)	Program Assessment Committee meeting-PO-Assessment-2013-2017 Batch-	88
50.	19.10.2017 (111u)	Planning for DAC meeting	00
37.	21.10.2017 (Sat)	Last Working Day-III,V,VII Semester B.E./B.Tech	-
37.	30.10.2017 (Sat)	Commencement of end semester Examinations (III,V & VII semester B.E./B.Tech,	96
50.	50.10.2017(WOII)	III Semester M.E., M.B.A., and III, V semester MCA	20

Reopening day for the staff after Winter Vacation: 11.12.2017 (Monday) Reopening day for the Even semester of 2017 – 2018: 18.12.2017 (Monday). Academic Performance evaluation of faculty-2017-2018 (Odd Semester) – 11th – 15th Dec 2017.

K.L.N.COLLEGE OF ENGINEERING, POTTAPALAYAM - 630612. Department of Electrical and Electronics Engineering CLASS WISE TIME TABLE -2017-2018 (ODD)

Year/Sem/Sec : II / III / A

Faculty In-charge :M.Jeyamurugan

$\begin{array}{c} TIME \rightarrow \\ DAY \downarrow \end{array}$	09.00 - 09.50	09.50 – 10.40	10.55- 11.45	11.45- 12.35		01.15- 02.05	02.05- 02.55	02.55- 03.45	03.55- 04.45
$\overrightarrow{PERIOD} \rightarrow$	I	II	III	IV		V	VI	VII	VIII
MON	ESE JS	EMT ASSM	DLC(T) RJPP,TG	ESE JS	L	TPDE PB	EDC MJM	EMT ASSM	-
TUE	LICA SR	EDC(T) MJM,RJPP	DLC RJPP	TPDE PB	U N	LICA SR	E LAB / LDIC LAB MJM,TG / RJPP, SR		
WED	EDC MJM	LICA SR	TPDE PB	EMT(T) ASSM,AMJ	C	DLC RJPP	ESE JS	EDC/DLC MJM/RJPP	ТРО
THU	DLC RJPP	ESE JS	EDC MJM	EMT ASSM	H	TPDE PB	E LAB / LDIC LAB MJM,TG / RJPP, MML		
FRI	TPDE PB	EMT ASSM	DLC RJPP	EDC MJM		LICA SR	EMT ASSM	ESE/LICA JS/SR	-

Year/Sem/Sec : II / III / B

Faculty In-charge :S.Rajalingam

$\begin{array}{c} TIME \rightarrow \\ DAY \downarrow \end{array}$	09.00 – 09.50	09.50 – 10.40	10.55- 11.45	11.45- 12.35		01.15- 02.05	02.05- 02.55	02.55- 03.45	03.55- 04.45
<i>PERIOD</i> →	Ι	II	III	IV		V	VI	VII	VIII
MON	LICA SR	EDC MJM	LICA SR	ESE MML	L	E LAB / LDIC LAB TG,JS / SR,MML			-
TUE	TPDE MR	DLC TG	EMT(T) AM	EDC MJM	U N	TPDE MR	ESE MML	ТРО	ESE MML
WED	ESE MML	DLC TG	EDC MJM	EMT AM	C	TPDE MR		AB ML	
THU	DLC(T) TG,MJM	TPDE MR	DLC TG	EMT AM	H	EDC(T) MJM,TG	LICA SR	EMT AM	LICA SR
FRI	EMT AM	EDC MJM	LICA/ESE SR,MML	TPDE MR		DLC TG	EMT AM	EDC\DLC MJM/TG	-

SUB	SUBJECT NAME	STAF	F NAME	
CODE	SUBJECT NAME	SUBJECT MARIE		
MA6351	Transforms and Partial Differential Equations	TPDE	P. Brindha	M. Ramya
EE6301	Digital Logic Circuits	DLC	R.Jeyapandiprathap	T.Gopu
EE6302	Electromagnetic Theory	EMT	A.S.S.Murugan	A. Marimuthu
GE6351	Environmental Science and Engineering	ESE	Dr.J. Sangeetha	Dr.M. Mahalakshmi
EC6202	Electronic Devices and Circuits	EDC	M.Jeyamurugan	M.Jeyamurugan
EE6303	Linear Integrated Circuits and Applications	LICA	S.Rajalingam	S.Rajalingam
EC6361	Electronics Laboratory	E LAB	M.Jeyamurugan	M.Jeyamurugan
EE6311	Linear and Digital Integrated Circuits Laboratory	LDIC LAB	R.Jeyapandiprathap	S.Rajalingam

		SEMESTER III					
S.NO.	COURSE CODE	COURSE TITLE		L	Т	Р	С
1	MA6351	Transforms and Partial Differential Equations		3	1	0	4
2	EE6301	Digital Logic Circuits		3	1	0	4
3	EE6302	Electromagnetic Theory		3	1	0	4
4	GE6351	Environmental Science and Engineering		3	0	0	3
5	EC6202	Electronic Devices and Circuits		3	1	0	4
6	EE6303	Linear Integrated Circuits and Applications		3	0	0	3
7	EC6361	Electronics Laboratory		0	0	3	2
8	EE6311	Linear and Digital Integrated Circuits Laboratory		0	0	3	2
			TOTAL	18	4	6	26

MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

OBJECTIVES:

To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.

To acquaint the student with Fourier transform techniques used in wide variety of situations.

To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations - Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II **FOURIER SERIES**

Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier series - Parseval's identity - Harmonic analysis.

UNIT III **APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS**

Classification of PDE - Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

UNIT IV FOURIER TRANSFORMS

of Fourier integral theorem - Fourier transform pair - Fourier sine and Statement cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

UNIT V **Z - TRANSFORMS AND DIFFERENCE EQUATIONS**

Z- transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem - Formation of difference equations – Solution of difference equations using Z - transform.

OUTCOMES:

The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:

- Veerarajan T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., 1. New Delhi, Second reprint, 2012.
- Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012. 2.
- 3. Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd. 1998.

REFERENCES:

- Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications 1. Pvt Ltd, 2007.
- 2. Ramana. B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company Limited, New Delhi. 2008.
- Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007. 3.
- 4.
- Ray Wylie C and Barrett L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, 5. Sixth Edition, New Delhi, 2012.
- 6. Datta K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013.

9+3

LTPC 3104

9+3

9+3

TOTAL (L:45+T:15): 60 PERIODS

9+3

9+3

OBJECTIVES:

To study various number systems , simplify the logical expressions using Boolean functions

To study implementation of combinational circuits

To design various synchronous and asynchronous circuits.

To introduce asynchronous sequential circuits and PLCs

To introduce digital simulation for development of application oriented logic circuits.

UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

Review of number systems, binary codes, error detection and correction codes (Parity and Hamming code0- Digital Logic Families ,comparison of RTL, DTL, TTL, ECL and MOS families -operation, characteristics of digital logic family.

UNIT II COMBINATIONAL CIRCUITS

Combinational logic - representation of logic functions-SOP and POS forms, K-map representationsminimization using K maps - simplification and implementation of combinational logic - multiplexers and demultiplexers - code converters, adders, subtractors.

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

Sequential logic- SR, JK, D and T flip flops - level triggering and edge triggering - counters - asynchronous and synchronous type - Modulo counters - Shift registers - design of synchronous sequential circuits – Moore and Melay models- Counters, state diagram; state reduction; state assignment.

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABLE

LOGIC DEVICES

Asynchronous sequential logic circuits-Transition table, flow table-race conditions, hazards & errors in digital circuits; analysis of asynchronous sequential logic circuits-introduction to Programmable Logic Devices: PROM – PLA – PAL.

UNIT V VHDL

RTL Design – combinational logic – Sequential circuit – Operators – Introduction to Packages – Subprograms – Test bench. (Simulation /Tutorial Examples: adders, counters, flipflops, FSM, Multiplexers /Demultiplexers).

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

- 1. Raj Kamal, 'Digital systems-Principles and Design', Pearson Education 2nd edition, 2007.
- 2. M. Morris Mano, 'Digital Design with an introduction to the VHDL', Pearson Education, 2013.
- 3. Comer "Digital Logic & State Machine Design, Oxford, 2012.

REFERENCES:

- 1. Mandal "Digital Electronics Principles & Application, McGraw Hill Edu, 2013.
- 2. William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.
- 3. Floyd and Jain, 'Digital Fundamentals', 8th edition, Pearson Education, 2003.
- 4. Anand Kumar, Fundamentals of Digital Circuits, PHI, 2013.
- 5. Charles H.Roth, Jr, Lizy Lizy Kurian John, 'Digital System Design using VHDL, Cengage, 2013.
- 6. John M.Yarbrough, 'Digital Logic, Application & Design', Thomson, 2002.
- 7. Gaganpreet Kaur, VHDL Basics to Programming, Pearson, 2013.
- 8. Botros, HDL Programming Fundamental, VHDL& Verilog, Cengage, 2013.

9

9

9

9 in

9

EE6302

ELECTROMAGNETIC THEORY

LTPC 3104

9

9

9

OBJECTIVES:

To introduce the basic mathematical concepts related to electromagnetic vector fields

To impart knowledge on the concepts of electrostatics, electrical potential, energy density and their applications.

To impart knowledge on the concepts of magnetostatics, magnetic flux density, scalar and vector potential and its applications.

To impart knowledge on the concepts of Faraday's law, induced emf and Maxwell's equations

To impart knowledge on the concepts of Concepts of electromagnetic waves and Pointing vector.

UNIT I ELECTROSTATICS – I

Sources and effects of electromagnetic fields - Coordinate Systems - Vector fields - Gradient, Divergence, Curl - theorems and applications - Coulomb's Law - Electric field intensity - Field due to discrete and continuous charges - Gauss's law and applications.

ELECTROSTATICS – II UNIT II

Electric potential – Electric field and equipotential plots, Uniform and Non-Uniform field, Utilization factor - Electric field in free space, conductors, dielectrics - Dielectric polarization - Dielectric strength - Electric field in multiple dielectrics - Boundary conditions, Poisson's and Laplace's

equations, Capacitance, Energy density, Applications.

UNIT III MAGNETOSTATICS

Lorentz force, magnetic field intensity (H) - Biot-Savart's Law - Ampere's Circuit Law - H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) - B in free space, conductor, magnetic materials - Magnetization, Magnetic field in multiple media - Boundary conditions, scalar and vector potential, Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications. 9

ELECTRODYNAMIC FIELDS UNIT IV

Magnetic Circuits - Faraday's law - Transformer and motional EMF - Displacement current - Maxwell's equations (differential and integral form) – Relation between field theory and circuit theory – Applications. q

UNIT V **ELECTROMAGNETIC WAVES**

Electromagnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance, propagation constant - Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Povnting vector - Plane wave reflection and refraction - Standing Wave - Applications.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.

TEXT BOOKS:

- Mathew N. O. Sadiku, 'Principles of Electromagnetics', 4 th Edition ,Oxford University Press Inc. First 1. India edition, 2009.
- 2. Ashutosh Pramanik, 'Electromagnetism – Theory and Applications', PHI Learning Private Limited, New Delhi, Second Edition-2009.
- K.A. Gangadhar, P.M. Ramanthan ' Electromagnetic Field Theory (including Antennaes and wave 3. propagation', 16th Edition, Khanna Publications, 2007.

REFERENCES:

- Joseph, A.Edminister, 'Schaum's Outline of Electromagnetics, Third Edition (Schaum's Outline Series). 1. Tata McGraw Hill, 2010
- 2. William H. Hayt and John A. Buck, 'Engineering Electromagnetics', Tata McGraw Hill 8th Revised edition. 2011.
- 3. Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 2010.
- Bhag Singh Guru and Hüseyin R. Hiziroglu "Electromagnetic field theory Fundamentals", 4. Cambridge University Press; Second Revised Edition, 2009.

ENVIRONMENTAL SCIENCE AND ENGINEERING

OBJECTIVES:

GE6351

To the study of nature and the facts about environment.

To finding and implementing scientific, technological, economic and political solutions to environmental problems.

To study the interrelationship between living organism and environment.

To appreciate the importance of environment by assessing its impact on the human world;

envision the surrounding environment, its functions and its value.

To study the dynamic processes and understand the features of the earth's interior and surface. To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment - concept of an ecosystem - structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) - Introduction to biodiversity definition: genetic, species and ecosystem diversity - biogeographical classification of India - value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values -Biodiversity at global, national and local levels - India as a mega-diversity nation - hot-spots of biodiversity - threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts endangered and endemic species of India - conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds

Field study of simple ecosystems - pond, river, hill slopes, etc.

UNIT II **ENVIRONMENTAL POLLUTION**

Definition - causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry-Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere formation of smog, PAN, acid rain, oxygen and ozone chemistry;- Mitigation procedures- Control of particulate and gaseous emission, Control of SO₂, NO _X, CO and HC) (b) Water pollution : Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters - physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes - (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards-role of an individual in prevention of pollution - pollution case studies -Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people - Water resources: Use and overutilization of surface and ground water, dams-benefits and problems - Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies - Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes - Biogas - production and uses, anaerobic digestion; case studies - Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification - role of an individual in conservation of natural resources - Equitable use of resources for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins -Biochemical

10

12

16

degradation of pollutants, Bioconversion of pollutants. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management - resettlement and rehabilitation of people; its problems and concerns, case studies - role of non-governmental organizationenvironmental ethics: Issues and possible solutions - 12 Principles of green chemistry- nuclear accidents and holocaust, case studies. - wasteland reclamation - consumerism and waste products environment production act - Air act - Water act - Wildlife protection act - Forest conservation act -The Biomedical Waste (Management and Handling) Rules; 1998 and amendments- scheme of labeling of environmentally friendly products (Ecomark). enforcement machinery involved in environmental legislation- central and state pollution control boards- disaster management: floods, earthquake, cyclone and landslides.

Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations - population explosion - family welfare programme environment and human health - human rights - value education - HIV / AIDS - women and child welfare -Environmental impact analysis (EIA)- -GIS-remote sensing-role of information technology in environment and human health - Case studies.

OUTCOMES:

Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

Public awareness of environmental is at infant stage.

Ignorance and incomplete knowledge has lead to misconceptions

Development and improvement in std. of living has lead to serious environmental disasters

TEXT BOOKS :

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.

REFERENCES:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press 2005.

7

6

TOTAL: 45 PERIODS

ELECTRONIC DEVICES AND CIRCUITS

OBJECTIVES:

EC6202

The student should be made to:

Be familiar with the structure of basic electronic devices. Be exposed to the operation and applications of electronic devices.

PN JUNCTION DEVICES UNIT I

PN junction diode -structure, operation and V-I characteristics, diffusion and transient capacitance -Rectifiers - Half Wave and Full Wave Rectifier, - Display devices- LED, Laser diodes- Zener diodecharacteristics-Zener Reverse characteristics - Zener as regulator

UNIT II TRANSISTORS

BJT, JFET, MOSFET- structure, operation, characteristics and Biasing UJT, Thyristor and IGBT -Structure and characteristics.

UNIT III **AMPLIFIERS**

Analysis of CE, CB, CC amplifiers- Gain and frequency response -BJT small signal model -MOSFET small signal model- Analysis of CS and Source follower - Gain and frequency response-High frequency analysis.

UNIT IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER

BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET input stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers -Types (Qualitative analysis).

UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS

Advantages of negative feedback - voltage / current, series, Shunt feedback - positive feedback Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

To explain the structure of the basic electronic devices. To design applications using the basic electronic devices.

TEXT BOOKS:

- 1. David A. Bell ."Electronic Devices and Circuits". Prentice Hall of India. 2004.
- 2. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2004.

REFERENCES:

- 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.
- 2. Floyd, "Electron Devices" Pearson Asia 5th Edition, 2001.
- 3. Donald A Neamen, "Electronic Circuit Analysis and Design" Tata McGraw Hill. 3rd Edition. 2003.
- 4. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2002.
- 5. Robert B. Northrop, "Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation", CRC Press, 2004.

9

- 9

9

9

9

LTPC 3104

EE6303 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

OBJECTIVES:

To study the IC fabrication procedure.

To study characteristics; realize circuits; design for signal analysis using Op-amp ICs. To study the applications of Op-amp.

To study internal functional blocks and the applications of special ICs like Timers,

PLL circuits, regulator Circuits, ADCs.

UNIT I IC FABRICATION

IC classification, fundamental of monolithic IC technology, epitaxial growth, masking and etching, diffusion of impurities. Realisation of monolithic ICs and packaging. Fabrication of diodes, capacitance, resistance and FETs.

UNIT II CHARACTERISTICS OF OPAMP

Ideal OP-AMP characteristics, DC characteristics, AC characteristics, differential amplifier; frequency response of OP-AMP; Basic applications of op-amp – Inverting and Non-inverting Amplifiers-V/I & I/V converters ,summer, differentiator and integrator.

UNIT III APPLICATIONS OF OPAMP

Instrumentation amplifier, Log and Antilog Amplifiers, first and second order active filters, , comparators, multivibrators, waveform generators, clippers, clampers, peak detector, S/H circuit, D/A converter (R- 2R ladder and weighted resistor types), A/D converters using opamps.

UNIT IV SPECIAL ICs

Functional block, characteristics & application circuits with 555 Timer Ic-566 voltage controlled oscillator Ic; 565-phase lock loop Ic, Analog multiplier ICs.

UNIT V APPLICATION ICs

IC voltage regulators –LM78XX,79XX Fixed voltage regulators - LM317, 723 Variable voltage regulators, switching regulator- SMPS- LM 380 power amplifier- ICL 8038 function generator IC.

TOTAL : 45 PERIODS

OUTCOMES:

Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

- 1. David A.Bell, 'Op-amp & Linear ICs', Oxford, 2013.
- 2. D.Roy Choudhary, Sheil B.Jani, 'Linear Integrated Circuits', II edition, New Age, 2003.
- 3. Ramakant A.Gayakward, 'Op-amps and Linear Integrated Circuits', IV edition, Pearson Education, 2003 / PHI. 2000.

REFERENCES:

- 1. Fiore,"Opamps & Linear Integrated Circuits Concepts & Applications", Cengage, 2010.
- 2. Floyd ,Buchla,"Fundamentals of Analog Circuits, Pearson, 2013.
- 3. Jacob Millman, Christos C.Halkias, 'Integrated Electronics Analog and Digital circuits system', Tata McGraw Hill, 2003.
- 4. Robert F. Coughlin, Fredrick F. Driscoll, 'Op-amp and Linear ICs', PHI Learning, 6th edition, 2012.

L T P C 3 0 0 3

9

9

9

9

9

EC6361

OBJECTIVES:

To enable the students to understand the behavior of semiconductor device based on experimentation

LIST OF EXPERIMENTS:

- 1. Characteristics of Semi conductor diode and Zener diode
- 2. Characteristics of a NPN Transistor under common emitter, common collector and common base configurations
- 3. Characteristics of JFET(Draw the equivalent circuit)
- 4. Characteristics of UJT and generation of saw tooth waveforms
- 5. Design and Frequency response characteristics of a Common Emitter amplifier
- 7. Characteristics of photo diode & photo transistor, Study of light activated relay circuit
- 8. Design and testing of RC phase shift, LC oscillators
- 9. Single Phase half-wave and full wave rectifiers with inductive and capacitive filters
- 10. Differential amplifiers using FET
- 11. Study of CRO for frequency and phase measurements
- 12. Astable and Monostable multivibrators
- 13. Realization of passive filters

TOTAL : 45 PERIODS

OUTCOMES:

Ability to understand and analyse, linear and digital electronic circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

- 1.Semiconducter devices like Diode, Zener Diode, NPN Transistors, JFET, UJT, Photo diode, Photo Transistor
- 2. Resistors, Capacitors and inductors
- 3. Necessary digital IC 8

	4.0
4. Function Generators	10
5. Regulated 3 output Power Supply 5, ± 15V	10
6. CRO	10
7. Storage Oscilloscope	1
8. Bread boards	10
	-

9. Atleast one demo module each for the listed equipments.

10. Component data sheets to be provided

OBJECTIVES:

Working Practice in simulators / CAD Tools / Experiment test bench to learn design, testing and characterizing of circuit behaviour with digital and analog ICs.

LIST OF EXPERIMENTS:

- 1. Implementation of Boolean Functions, Adder/ Subtractor circuits.
- 2. Code converters: Excess-3 to BCD and Binary to Gray code converter and vice-versa
- 3. Parity generator and parity checking
- 4. Encoders and Decoders
- 5. Counters: Design and implementation of 4-bit modulo counters as synchronous and Asynchronous types using FF IC's and specific counter IC.
- 6. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitable IC's.
- 7. Study of multiplexer and demultiplexer
- 8 Timer IC application: Study of NE/SE 555 timer in Astable, Monostable operation.
- 9. Application of Op-Amp: inverting and non-inverting amplifier, Adder, comparator, Integrator and Differentiator.
- 10. Study of VCO and PLL ICs:
 - i. Voltage to frequency characteristics of NE/ SE 566 IC.
 - ii. Frequency multiplication using NE/SE 565 PLL IC.

TOTAL : 45 PERIODS

OUTCOMES:

Ability to understand and analyse, linear and digital electronic circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

	(3 per Batch)						
S.No	Name of the equipments / Components	Quantity Required	Remarks				
1	Dual ,(0-30V) variable Power Supply	10	-				
2	CRO	9	30MHz				
3	Digital Multimeter	10	Digital				
4	Function Generator	8	1 MHz				
5	IC Tester (Analog)	2					
6	Bread board	10					
7	Computer (PSPICE installed)	1					

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM - 630 612 Lecture Schedule [Mon:5;Tue:4;Wed:3;Thu:5;Fri:1]

Course/Branch: B.E/ EEE Duration : June-17 to Oct-17 Semester : III Section: 'A&B' Regulation : 2013 / AUC

Subject Name: Transforms & PDE Subject Code: MA6351 Staff handling: P.Brindha, M.Ramya /AP2

<u>AIM</u>: To impart basic Mathematical knowledge required for the better understanding of all engineering subjects of various branches.

<u>OBJECTIVE</u>: The course objective is to develop the skills of the students in the areas of Transforms and Partial Differential Equations. This will be necessary for their effective studies in a large number of engineering subjects like heat conduction, communication systems, electro-optics and electromagnetic theory. The course will also serve as a prerequisite for post graduate and specialized studies and research.

Course Outcomes

Students are able to

Unit	Course Outcomes	POs	PSOs
CO1	Solve First, Second order homogeneous and non homogeneous partial differential equations	1,2,4	1,2
CO2	Find the Fourier series of a given function satisfying Dirchlet's condition.	1,2,4	1,2
CO3	Apply Fourier series to solve one dimensional way, one and two dimensional heat equations.	1,2,4	1,2
CO4	Determine Fourier transform for a given function and use them to evaluate certain definite Integrals	1,2,4	1,2
CO5	Determine z transforms of standard functions and use them to solve difference equations	1,2,4	1,2

S.No.	Date	Period	Topics to be covered	Book No (Page No)
Unit-I : P	ARTIAL DIFI	FERENTIAL I		Iours: 12(as per AUC) ed hours :15
1			Formation of PDE'S	T1: 1.1 – 1.19 T2: 534 - 536
2			Eliminating arbitrary constants and functions	T1: 1.1 – 1.19 T2: 534 - 536
3			Solutions of standard types of I Order Equations of the form $F(p,q)=0$	T1: 1.23 – 1.29 T2: 540 - 543
4			Clairaut's Form	T1: 1.24 – 1.30 T2:543& 414-415
5			Tutorial-I	
6			Equations of the form $F(z,p,q)=0$ Equations of the form $F(x,p)=F(y,q)$	T1: 1.24 – 1.37 T2: 541 - 542
7			Problem solving session on S.No 06	T1: 1.26 – 1.48 T2: 540 - 543
8			Langrange's Linear Equations - Method of grouping	T1: 1.51 – 1.68 T2: 538 - 540
9			Langrange's Linear Equations - Method of Multipliers	T1: 1.51 - 1.68 T2: 538 - 540
10			Tutorial-II	
11			Linear PDE of Second & Higher Order with constant coefficients	T1: 1.71 – 1.75 T2: 546 - 551
12			Problem solving session on S.No 11.	T1: 1.71 – 1.75 T2: 546 - 551
13			Non Homogeneous of second and higher order with constant coefficients.	T2: 551 - 575
14			Tutorial-III	
15		(NPTEL)	Video Session about Applications of Partial Differential Equation in various branches of Engineering. CT I (12.07.17 TO 19.07.17)	

Unit: II – FOURIER SERIES Target Hours: 12(as per AUC Scheduled hours :15						
6	Continuity, discontinuity, limits, periodic functions	T1: 2.1 - 2.2				
	&Dirichlet's condition	T2: 368 & 372				
_	Fourier series of periodicity 2π	T1: 2.5 - 2.39				
7		T2: 370 – 372				
8	Fourier Series of periodicity 21	T1: 2.5 - 2.39				
		T2: 375 – 376				
9	Tutorial-I					
20	Fourier Series of Odd & Even functions	T1: 2.8 – 2.39				
		T2: 377 – 381				
21	Problem solving session on S.No 20.	T1: 2.8 – 2.39				
		T2: 377 – 381				
22	Half Range Sine Series	T1: 2.42 – 2.70				
		T2: 382 – 384				
23	Half Range Cosine Series	T1: 2.42 – 2.70				
		T2: 382 – 384				
24	Problem solving session on S.Nos 21 & 22.					
25	Tutorial-II					
26	Complex form of Fourier series	T1: 2.75 – 2.89				
	complex torm of round series	T2: 388 – 389				
27	RMS Value, Parseval's Identity	T1: 2.45 – 2.70				
	Rivis value, raiseval s lucility	T1: 2.45 – 2.70 T2: 386 – 387				
10	II. Analusia	T1: 2.73 – 2.86				
28	Harmonic Analysis					
20		T2: 389 – 392				
29	Problem solving session on S.No 28					
30	Tutorial-III					
ignment: IIDate o	of announcement:24.07.17 Date of Submission:31.07.17					
	CIT-I (31.07.17 TO 07.08.17)					
		10(AUC)				
I-III :APPLICA		12(as per AUC)				
	Scheduled hou					
31	Scheduled hou Classification of PDE – Methods of separation of variable	T1: 3.2 - 3.38				
	Classification of PDE – Methods of separation of variable	T1: 3.2 - 3.38 T2: 557- 563				
31 32	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations	T1: 3.2 - 3.38 T2: 557- 563 T1: 3.2 - 3.38				
32	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero	T1: 3.2 - 3.38 T2: 557- 563 T1: 3.2 - 3.38 T2: 557- 563				
	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with	T1: 3.2 - 3.38 T2: 557- 563 T1: 3.2 - 3.38 T2: 557- 563 T1: 4.1 - 4.23				
32	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero	T1: 3.2 - 3.38 T2: 557- 563 T1: 3.2 - 3.38 T2: 557- 563 T1: 4.1 - 4.23 T2: 564 - 571				
32	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Solutions of one dimensional	T1: 3.2 - 3.38 T2: 557- 563 T1: 3.2 - 3.38 T2: 557- 563 T1: 4.1 - 4.23 T2: 564 - 571 T1: 4.1 - 4.23				
32	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation	T1: 3.2 - 3.38 T2: 557- 563 T1: 3.2 - 3.38 T2: 557- 563 T1: 4.1 - 4.23 T2: 564 - 571				
32	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I	$\begin{array}{c} T1: \ 3.2 \ - \ 3.38 \\ T2: \ 557- \ 563 \\ T1: \ 3.2 \ - \ 3.38 \\ T2: \ 557- \ 563 \\ T1: \ 4.1 \ - \ 4.23 \\ T2: \ 564 \ - \ 571 \\ T1: \ 4.1 \ - \ 4.23 \\ T2: \ 564 \ - \ 571 \\ \end{array}$				
32 33 34	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation	T1: 3.2 - 3.38 T2: 557- 563 T1: 3.2 - 3.38 T2: 557- 563 T1: 4.1 - 4.23 T2: 564 - 571 T1: 4.1 - 4.23				
32 33 34 35	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I	$\begin{array}{c} T1: \ 3.2 \ - \ 3.38 \\ T2: \ 557- \ 563 \\ T1: \ 3.2 \ - \ 3.38 \\ T2: \ 557- \ 563 \\ T1: \ 4.1 \ - \ 4.23 \\ T2: \ 564 \ - \ 571 \\ T1: \ 4.1 \ - \ 4.23 \\ T2: \ 564 \ - \ 571 \\ \end{array}$				
32 33 34 35	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Heat equation Tutorial-I Steady state condition with Zero boundary condition in	$\begin{array}{c} T1: 3.2 & -3.38\\ T2: 557-563\\ T1: 3.2 & -3.38\\ T2: 557-563\\ T1: 4.1 & -4.23\\ T2: 564 & -571\\ T1: 4.1 & -4.23\\ T2: 564 & -571\\ T1: 4.5 & -4.26\\ \end{array}$				
32 33 34 35 36	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary	$\begin{array}{c} T1: \ 3.2 \ - \ 3.38\\ T2: \ 557- \ 563\\ T1: \ 3.2 \ - \ 3.38\\ T2: \ 557- \ 563\\ T1: \ 4.1 \ - \ 4.23\\ T2: \ 564 \ - \ 571\\ T1: \ 4.1 \ - \ 4.23\\ T2: \ 564 \ - \ 571\\ \hline T1: \ 4.5 \ - \ 4.26\\ T2: \ 572 \ - \ 575\\ T1: \ 4.27 \ - \ 4.40\\ \end{array}$				
32 33 34 35 36 37	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE	$\begin{array}{c} T1: \ 3.2 \ - \ 3.38\\ T2: \ 557- \ 563\\ \hline\\ T1: \ 3.2 \ - \ 3.38\\ T2: \ 557- \ 563\\ \hline\\ T1: \ 4.1 \ - \ 4.23\\ \hline\\ T2: \ 564 \ - \ 571\\ \hline\\ T1: \ 4.1 \ - \ 4.23\\ \hline\\ T2: \ 564 \ - \ 571\\ \hline\\ \hline\\ T1: \ 4.5 \ - \ 4.26\\ \hline\\ T2: \ 572 \ - \ 575\\ \hline\\ T1: \ 4.27 \ - \ 4.40\\ \hline\\ T2: \ 572 \ - \ 575\\ \hline\end{array}$				
32 33 34 35 36	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ T1:\ 5.18\ -\ 5.47\\ \end{array}$				
32 33 34 35 36 37 38	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations	$\begin{array}{c} T1: \ 3.2 \ - \ 3.38\\ T2: \ 557- \ 563\\ T1: \ 3.2 \ - \ 3.38\\ T2: \ 557- \ 563\\ T1: \ 4.1 \ - \ 4.23\\ T2: \ 564 \ - \ 571\\ T1: \ 4.1 \ - \ 4.23\\ T2: \ 564 \ - \ 571\\ \hline T1: \ 4.5 \ - \ 4.26\\ T2: \ 572 \ - \ 575\\ T1: \ 4.27 \ - \ 4.40\\ T2: \ 572 \ - \ 575\\ T1: \ 5.18 \ - \ 5.47\\ T2: \ 572 \ - \ 573\\ \end{array}$				
32 33 34 35 36 37	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline T1:\ 5.18\ -\ 5.47\\ \hline \end{array}$				
32 33 34 35 36 37 38 39	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline \\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline \\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \end{array}$				
32 33 34 35 36 37 38	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ \hline\\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ \hline\\\\ T2:\ 5.47\ -\ 5.47\\ \hline\\\\ T1:\ 5.18\ -\ 5.47\\ \hline\\\\ T2:\ 5.18\ -\ 5.47\\ \hline\\\\ T1:\ 5.18\ -\ 5.47\\ \hline\\\\ T2:\ 5.47\ -\ 5.47\\ \hline\\\\ T2:\ 5.48\ -\ 5.47\ -\ 5$				
32 33 34 35 36 37 38 39 40	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Problem solving session on S.Nos 39	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline \\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline \\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \end{array}$				
32 33 34 35 36 37 38 39 40 41	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Tutorial-II	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\end{array}$				
32 33 34 35 36 37 38 39 40	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Problem solving session on S.Nos 39	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline \\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.6\ -\ 5.18\\ \hline \end{array}$				
32 33 34 35 36 37 38 39 40 41	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Tutorial-II Infinite Plates	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline \\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline \\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ \hline \\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.6\ -\ 5.18\\ T2:\ 574\ -\ 575\\ \hline \end{array}$				
32 33 34 35 36 37 38 39 40 41	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Tutorial-II	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ \hline\\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\end{array}$				
32 33 34 35 36 37 38 39 40 41 42	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Tutorial-II Infinite Plates	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline \\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline \\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ \hline \\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline \\ T1:\ 5.6\ -\ 5.18\\ T2:\ 574\ -\ 575\\ \hline \end{array}$				
32 33 34 35 36 37 38 39 40 41 42	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Tutorial-II Infinite Plates	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ \hline\\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\end{array}$				
32 33 34 35 36 37 38 39 40 41 42 43	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Problem solving session on S.Nos 39 Tutorial-II Infinite Plates Problem solving session on S.Nos.4 2	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ \hline\\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\end{array}$				
32 33 34 35 36 37 38 39 40 41 42 43 44	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Steady state condition with Non-zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Problem solving session on S.Nos 39 Tutorial-II Infinite Plates Problem solving session on S.Nos.4 2 Tutorial-III Content beyond the syllabus- Solution of Telegraph	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ \hline\\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\end{array}$				
32 33 34 35 36 37 38 39 40 41 42 43 44	Classification of PDE – Methods of separation of variable Solutions of one dimensional wave equations With initial velocity is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional wave equations with initial displacement is zero Solutions of one dimensional Heat equation Tutorial-I Steady state condition with Zero boundary condition in ODHE Introduction to two dimensional Heat flow equations Solutions of two dimensional Heat flow equations Problem solving session on S.Nos 39 Tutorial-II Infinite Plates Problem solving session on S.Nos.4 2 Tutorial-III	$\begin{array}{c} T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 3.2\ -\ 3.38\\ T2:\ 557-\ 563\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ T1:\ 4.1\ -\ 4.23\\ T2:\ 564\ -\ 571\\ \hline\\ \hline\\ T1:\ 4.5\ -\ 4.26\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 4.27\ -\ 4.40\\ T2:\ 572\ -\ 575\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.18\ -\ 5.47\\ T2:\ 572\ -\ 573\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\\ T1:\ 5.6\ -\ 5.18\\ \hline\end{array}$				

		Target Hours: 12(as per AUC) Scheduled hours :15		
46	Fourier Integral Theorem - Problems	T1: 6.1 – 6.6 T2: 709 – 712		
47	Fourier Sine Transforms&Properties - Problems	T1: 6.5 – 6.22 & 6.26 – 6.31 T2: 711 - 717		
48	Fourier Cosine Transforms & Properties - Problems	T1: 6.5 – 6.22 & 6.26 – 6.31 T2: 711 - 717		
49	Tutorial-I			
50	Complex Fourier Transforms and its Inversion Formula	T1: 6.6 – 6.7 T2: 721 - 723		
51	Problem solving session on S.Nos 50.	T1: 6.6 – 6.7 T2: 721 - 723		
52	Convolution Theorem and problems	T1: 6.31 – 6.39 T2: 718 - 720		
53	Problem solving session on S.Nos 52.	T1: 6.31 - 6.39 T2: 718 - 720		
54	Tutorial-II			
55	Parseval's Identity- Introduction	T1: 6.32 - 6.39 T2: 719 - 720		
56	Application of Parseval's Identity	T1: 6.32 - 6.39 T2: 719 - 720		
57	Problem solving session on S.Nos 56.			
58	Tutorial-III			
59	Content beyond the syllabus – Application of Fourier Transform in DSP			
60	Question Bank Discussion			
ssignment:IV	Date of announcement: 06.09.17 Date of Submission: 12.0	9.17		
<u> </u>	CIT-II(11.09.17 TO 18.09.17)	ırs: 12(as per AUC)		
<u> </u>	CIT-II(11.09.17 TO 18.09.17) SFORM & DIFFERENCE EQUATIONS Target How	urs: 12(as per AUC) hours :15 T1: 7.1 – 7.5		
nit-V : Z-TRAN	CIT-II(11.09.17 TO 18.09.17) SFORM & DIFFERENCE EQUATIONS Target Hot Scheduled	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7		
nit-V : Z-TRAN	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hot Scheduled Definition of Z –Transforms and Properties	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934		
nit-V : Z-TRAN 61 62	CIT-II(11.09.17 TO 18.09.17) SFORM & DIFFERENCE EQUATIONS Scheduled Definition of Z – Transforms and Properties Elementary functions of Z- Transforms	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936		
nit-V : Z-TRAN 61 62 63 64 65	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hot Scheduled Definition of Z – Transforms and Properties Elementary functions of Z – Transforms Problem Solving Session on S.No 62 Inverse Z - Transforms Tutorial-I Tutorial-I	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943		
nit-V : Z-TRAN 61 62 63 64 65 66	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hot Scheduled Definition of Z – Transforms and Properties Elementary functions of Z- Transforms Problem Solving Session on S.No 62 Inverse Z- Transforms Tutorial-I Method of Partial fractions	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943		
nit-V : Z-TRAN 61 62 63 64 65 66 67	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hot Scheduled Definition of Z – Transforms and Properties Elementary functions of Z- Transforms Elementary functions of Z- Transforms Problem Solving Session on S.No 62 Inverse Z- Transforms Tutorial-I Method of Partial fractions Method of Residues	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29		
nit-V : Z-TRAN 61 62 63 64 65 66 67 68	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hot Scheduled Definition of Z – Transforms and Properties Elementary functions of Z- Transforms Problem Solving Session on S.No 62 Inverse Z- Transforms Tutorial-I Method of Partial fractions Method of Residues Tutorial-II Tutorial-II Tutorial-II	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943 T1: 7.32 – 7.34 T2: 942 - 943		
nit-V : Z-TRAN 61 62 63 64 65 66 67 68 69	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hot Scheduled Definition of Z – Transforms and Properties Elementary functions of Z- Transforms Problem Solving Session on S.No 62 Inverse Z- Transforms Tutorial-I Method of Partial fractions Method of Residues Tutorial-II Formation of Difference Equations Formation of Difference Equations	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943 T1: 7.32 – 7.34 T2: 942 - 943 T1: 7.34 – 7.38 T2: 943 - 946		
nit-V : Z-TRAN 61 62 63 64 65 66 67 68 69 70	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hot Scheduled Definition of Z – Transforms and Properties Elementary functions of Z- Transforms Problem Solving Session on S.No 62 Inverse Z- Transforms Tutorial-I Method of Partial fractions Method of Residues Tutorial-II Solution of Difference Equations Solution of Difference Equations using Z – transforms.	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943 T1: 7.32 – 7.34 T2: 942 - 943 T1: 7.34 – 7.38 T2: 943 - 946 T1: 7.34 – 7.38 T2: 943 – 946		
nit-V : Z-TRAN 61 62 63 64 65 66 67 68 69 70 71	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hot Scheduled Definition of Z –Transforms and Properties Elementary functions of Z- Transforms Elementary functions of Z- Transforms Problem Solving Session on S.No 62 Inverse Z- Transforms Tutorial-I Method of Partial fractions Method of Residues Tutorial-II Formation of Difference Equations Solution of Difference Equations using Z – transforms. Convolution Theorems and Problems	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943 T1: 7.32 – 7.34 T2: 942 - 943 T1: 7.34 – 7.38 T2: 943 - 946 T1: 7.34 – 7.38		
nit-V : Z-TRAN 61 62 63 64 65 66 67 68 69 70 71 72	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hot Scheduled Definition of Z –Transforms and Properties Elementary functions of Z- Transforms Elementary functions of Z- Transforms Problem Solving Session on S.No 62 Inverse Z- Transforms Tutorial-I Method of Partial fractions Method of Residues Tutorial-II Formation of Difference Equations Solution of Difference Equations using Z – transforms. Convolution Theorems and Problems Tutorial-III Tutorial-III	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943 T1: 7.32 – 7.34 T2: 942 - 943 T1: 7.34 – 7.38 T2: 943 - 946 T1: 7.34 – 7.38 T2: 943 – 946		
nit-V : Z-TRAN 61 62 63 64 65 66 67 68 69 70 71 72 73	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Homological Scheduled Definition of Z – Transforms and Properties Elementary functions of Z- Transforms Elementary functions of Z- Transforms Problem Solving Session on S.No 62 Inverse Z- Transforms Tutorial-I Method of Partial fractions Method of Residues Tutorial-II Formation of Difference Equations Solution of Difference Equations using Z – transforms. Convolution Theorems and Problems Tutorial-III Anna university questions revision - Units III & IV	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943 T1: 7.32 – 7.34 T2: 942 - 943 T1: 7.34 – 7.38 T2: 943 - 946 T1: 7.34 – 7.38 T2: 943 – 946		
nit-V : Z-TRAN 61 62 63 64 65 66 67 68 69 70 71 72 73 74	CIT-II(11.09.17 TO 18.09.17) Target Homological Sector Secto	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943 T1: 7.32 – 7.34 T2: 942 - 943 T1: 7.34 – 7.38 T2: 943 - 946 T1: 7.34 – 7.38 T2: 943 – 946		
nit-V : Z-TRAN 61 62 63 64 65 66 67 68 69 70 71 72 73	CIT-II(11.09.17 TO 18.09.17) ISFORM & DIFFERENCE EQUATIONS Target Hon Scheduled Definition of Z –Transforms and Properties Elementary functions of Z- Transforms Problem Solving Session on S.No 62 Inverse Z- Transforms Inverse Z- Transforms Method of Partial fractions Method of Residues Tutorial-II Formation of Difference Equations Solution of Difference Equations using Z – transforms. Convolution Theorems and Problems Tutorial-III Anna university questions revision - Units III & IV Anna university questions revision –I & II	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943 T1: 7.32 – 7.34 T2: 942 - 943 T1: 7.34 – 7.38 T2: 943 - 946 T1: 7.34 – 7.38 T2: 943 – 946		
nit-V : Z-TRAN 61 62 63 64 65 66 67 68 69 70 71 72 73 74	CIT-II(11.09.17 TO 18.09.17) Target Homological Sector Secto	Irs: 12(as per AUC) hours :15 T1: 7.1 – 7.5 T2: 929 - 931 T1: 7.7 T2: 934 T1: 7.4 – 7.5T2: 936 937 T1: 7.29 – 7.32 T2: 941 - 943 T1: 7.26 – 7.29 T2: 940 - 943 T1: 7.32 – 7.34 T2: 942 - 943 T1: 7.34 – 7.38 T2: 943 - 946 T1: 7.34 – 7.38 T2: 943 – 946		

Text Books:

S.NO	Title of the Book	Author	Publisher	Year
1.	Transforms and Partial Differential Equations	T.Veerarajan (T1)	Tata MC-Graw Hill	2009
2.	Higher Engineering Mathematics	Grewal, B.S (T2)	Khanna publishers	2007

Reference Books

SI.No	Title of the Book	Author	Publisher	Year
1.	Higher Engineering Mathematics	Ramana.B.V	Tata MC Graw-Hill	2007
2.	Advanced Modern Engineering Mathematics	Glyn James	Pearson Education	2007
3.	Engineering Mathematics Volume III	Kandasamy.P, Thilagavathy.K and Gunavathy.K	S.Chand& Company Ltd.	1996

Course	Program Outcome (POs)										PSOs				
Outcomes	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO	PSO	PSO
(CO)										10	11	12	1	2	3
C201.1	2	2	-	1	-	-	-	-	-	-	-	-	1	-	-
C201.2	2	2	-	1	-	-	-	-	-	-	-	-	1	-	-
C201.3	3	3	-	2	-	-	-	-	-	-	-	-	2	-	-
C201.4	2	2	-	1	-	-	-	-	-	-	-	-	1	-	-
C201.5	3	3	-	2	-	-	-	-	-	-	-	-	2	-	-
C201	2	2	-	1	-	-	-	-	-	-	-	-	1	-	-

Content Beyond Syllabus Added(CBS)	POs	Unit
Content beyond the syllabus- Solution of Telegraph equation	PO4	III
Content beyond the syllabus – Application of Fourier Transform in DSP	PO5	IV
http://www.bing.com/videos/search?q=nptel+videos+on+partial+differential+equations&FORM=VI		
RE1#view=detail∣=B30416CD5308DB58E2B4B30416CD5308DB58E2B4		

STAFF- IN CHARGE (P.BRINDHA)

HOD/MATHEMATICS (DR.J.K.SUBASHINI)

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM - 630 612 Department of Electrical and Electronics Engineering Lecture Schedule

Degree/Programme : **B.E / EEE** Course code & Name: **EE6301 & Digital Logic Circuits** Semester: **III** Section: **A &B** Regulation: **2013/AUC**

Duration: July-Oct 2017. Staff: T.Gopu, R. Jeyapandiprathap

AIM

• To understand and analyse the digital electronic circuits.

OBJECTIVES

- To study various number systems, simplify the logical expressions using Boolean functions
- To study implementation of combinational circuits
- To design various synchronous and asynchronous circuits.
- To introduce asynchronous sequential circuits and PLCs
- To introduce digital simulation for development of application oriented logic circuits.

Prerequisites: Computer Programming

<u>COURSE OUTCOMES</u>: After the course, the student should be able to

СО	Course Outcomes	POs	PSOs
C202.1	List the various types of number system and compare the digital logic families.	1,2,3,4	1
C202.2	Apply K – Map for simplification and implementation of combinational logic circuit	1,2,3,4	1
C202.3	Explain the synchronous Sequential logic circuits, draw the block diagram of Shift Registers	1,2,3,4	1
C202.4	Design of asynchronous sequential circuits and describe the operation of Programmable Logic Devices	1,2,3,4	1
C202.5	Develop the VHDL coding for combinational logic and Sequential circuits	1,2,3,4	1

S. No	Date	Book No [Page No]				
UNI	Г-I NUM	BER SYST	EMS AND DIGITAL LOGIC FAMILIES	Target Perio	d : 9+3=12	
			Review of number systems: Decimal, Binary, Octal, Hexadecimal Number System.	T1[11]	-	
			Tutorial-1	-	-	
			Binary codes: ASCII, Error detection codes: Parity Checking of Error Detection	R4[62,75]	-	
			Error correction codes (Parity and Hamming code)	R4[79]	-	
			Tutorial-2	-	-	
			Digital Logic Families: RTL-operation	T1[131]	R9[7.2]	
			DTL, ECL -operation	T1[134]	R9[7.28]	
			TTL -operation	T1[136]	R9[7.6]	
			MOS families -operation	T1[147]	R9[7.19]	
			Comparison of RTL, DTL, TTL, ECL and MOS families, characteristics of digital logic family, Revision.	T1[151]	R9[7.31] R9[7.2]	
			Tutorial-3	-	-	
			Seminar-I	-	-	
Tota	l Periods:		Assignment - I Dat	e of Submissic	on : 07.7.17	
			Test – I: Class Test-I (12.7.17 – 19.7.17)	Portion : Unit – 1		
UNIT	Г- II : СС	MBINATI	ONAL CIRCUITS T	arget Period	s:9+3=12	
			Combinational logic circuits: AND, OR, NOT, NAND, NOR, EX-OR	T1[53]	R9[1.2]	
			Representation of logic functions	T1[57]	R9[1.4]	
			SOP and POS forms	T1[60,64]	R9[1.8]	
			Tutorial-4	-	-	
			K-map representations	T1[76]	R9[4.18]	
			Minimization using K maps	T1[78]	R9[1.56]	

	Simplification and implementation of combinational logic	T1[89]	R9[1.69]
	Tutorial-5	-	-
	Multiplexers and demultiplexers	T1[227]	R9[2.40]
	Code converters-BCD,Gray,Binary,Ex-3code	T1[249]	R9[2.19]
	Adders, subtractors.	T1[214]	R9[2.5]
	Tutorial-6, Revision	-	-
Total Periods:		e of Submissi	on $\cdot 20.7.17$
	Test – II: CIT-I (31.7.17 – 07.8.17)		Unit – 1,II
UNIT – III : SYNCHR		arget Perio	
	Sequential logic- SR, JK flip flops	T1[312]	R9[3.2]
	D and T flip flops -	T1[326]	R9[3.9]
	Level triggering and edge triggering of flip flops	T1[335]	R9[3.3]
	Tutorial-7	-	R ² [5.5]
	Counters - asynchronous type	T1[390]	R9[4.59]
	Counters - asynchronous type	T1[390] T1[400]	
			R9[4.44
	Modulo counters –MOD Counter	T1[395]	R9[4.62]
	Shift registers –SISO,SIPO,PISO,PIPO	T1[385]	-
	Tutorial-8	-	-
	Design of synchronous sequential circuits – Moore and Melay models	T1[353]	R9[4.2]
	Counters, state diagram; state reduction; state assignment.	T1[355]	R9[4.5]
	Tutorial-9, Revision	-	-
Total Periods:	Test – III [22.08.17]: Class Test-II (21.08.17 – 28.08.17)		t Unit – III
JNIT – IV : Asynchro		arget Period	
	Asynchronous sequential logic circuits	T1[442]	R9[5.2]
	Transition table, flow table	T1[459]	R9[5.24
	Race conditions	T1[456]	R9[5.30
	Tutorial-10	-	-
	Hazards in digital circuits	T1[467]	R9[B.2]
	Errors in digital circuits	T1[467]	-
	Tutorial-11	-	-
	Analysis of asynchronous sequential logic circuits	T1[448]	R9[5.4]
	Tutorial-12	-	-
	Introduction to Programmable Logic Devices: PROM	R4[582]	R9[6.5]
	PLA	R4[608]	R9[6.19
	PAL, Revision	T1[509]	R9[6.33
	Quiz-I	-	-
Total Periods:	· · · · · · · · · · · · · · · · · · ·	e of Submissi	ion :23.8.1
	Test – IV: CIT-II (11.9.17 – 18.9.17)	Portion : U	
UNIT – V: VHDL		arget Perio	
	RTL Design	R5[44]	R9[8.106
	Combinational logic circuit-Gates&Adders,Counters	R5[17]	R9[8.94]
	Sequential circuit-FlipFlops,FSM,MUX&DEMUX	R5[47]	R9[8.77]
	Operators & Types of Operators	R5[76]	R9[8.16]
	Introduction to Packages	R5[76]	R9[8.3]
	Subprograms	-	R9[8.69]
	Test bench, Revision	-	R9[8.115
	Simulation /Tutorial Examples: adders-13	_	R9[8.98]
	Simulation / Tutorial Examples: counters-14	_	R9[8.86]
	Simulation / Tutorial Examples: flip-flops-15	- R5[44]	R9[8.106
	Simulation / Tutorial Examples: FSM	KJ[44]	R9[8.94]
	*	- D5[5/1]	K7[0.94]
	Simulation /Tutorial Examples:Multiplexers/Demultiplexers	R5[54]	-
	Quiz-II	-	-
	Seminar-II	-	-
	NPTEL Video & Self Study Topics		
Total Periods:	Content Beyond Syllabus: Verilog code language for VLSI softwa		signed
	specifically for use in <u>digital electronics</u> and <u>logic circuits drive sim</u>	ulations	

1 est - v. Cluss $1 est - 11 (05.10.17 - 05.10.17)$		Test – V: Class Test-III (03.10.17 – 05.10.17)	Portion : Unit – V
---	--	---	---------------------------

S.]	No	Title of the Book	Author	Publisher	Year
1	T1	Digital Systems – Principles and Design	Raj Kamal	Pearson Edison, 2nd	2007
				edition	
2	T2	Digital Design with an introduction to the VHDL	M. Morris Mano	Pearson Education	2013
3	T3	Digital Logic & State Machine Design,	Comer	Oxford	2012
4	R1	Digital Electronics Principles & Application	Mandal	McGraw Hill Edu	2013
5	R2	Digital Electronics-A Practical Approach with VHDL	William Keitz	Pearson	2013
6	R3	Digital Fundamentals	Floyd and Jain	8th edition, Pearson	2003
				Education	
7	R4	Fundamentals of Digital Circuits	Anand Kumar	PHI	2013
8	R5	Digital System Design using VHDL	Charles H.Roth, Jr, Lizy	Cengage	2013
			Lizy Kurian John		
9	R6	Digital Logic, Application & Design	John M.Yarbrough	Thomson	2002
10	R 7	VHDL Basics to Programming	Gaganpreet Kaur	Pearson	2013
11	R8	HDL Programming Fundamental, VHDL& Verilog	Botros	Cengage	2013
12	<i>R9</i>	Digital Logic Circuits	A.P.Godse &	Technical	2015
			D.A.Godse	Publications	
13	R10	Digital Circuits and Design	S.Salivahanan &	Vikas Publication	2008
			S. Arivazhzgan	3 rd Edition	

Books: <u>Text (T) / Reference(R)</u>:

Unit	http://nptel.ac.in/courses/webcourse-contents/ digital electronics/	
Ι	http://nptel.ac.in/courses/117103064/	IIT Madras
	<u>NPTEL</u> >> Electronics & Communication Engineering >> Digital Circuits (Web) >> Digital and Analog Signals	
II	http://nptel.ac.in/courses/117106086/	IIT Guwahati
	<u>NPTEL</u> >> Electronics & Communication Engineering >> Digital Circuits and Systems (Video) >>	
	Introduction To Digital Circuits	
III	http://nptel.ac.in/courses/117105080/	IIT Kharagpur
IV	<u>NPTEL</u> >> Electronics & Communication Engineering >> Digital Systems Design (Video) >>	
	Introduction to Digital Systems Design	
V	http://nptel.ac.in/courses/117108040/	IISc Bangalore
	<u>NPTEL</u> >> Electronics & Communication Engineering >> Digital System design with PLDs and	
	FPGAs (Video) >> Course Contents, Objective	

NPTEL:

Mapping of Course Outcomes (COs) , Course (C), Program Specific Outcomes (PSOs) with Program Outcomes. (POs) – Before CBS

_															
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C202.1	3	2	1	1	-	-	-	-	-	-	-	-	2	-	-
C202.2	2	2	2	2	-	-	-	-	-	-	-	-	2	-	-
C202.3	2	2	2	2	-	-	-	-	-	-	-	-	2	-	-
C202.4	1	2	2	1	-	-	-	-	-	-	-	-	2	-	-
C202.5	1	1	1	1	-	-	-	-	-	-	-	-	1	-	-
C202	2	2	2	1	-	-	-	-	-	-	-	-	2	-	-

Content Beyond Syllabus Added(CBS)	POs strengthened / vacant filled	CO / Unit
"Verilog code language for VLSI software based", designed specifically for	PO5(2) strengthened	C202.5/V
use in digital electronics and logic circuits drive simulations.		

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM

LECTURE SCHEDULE

Degree/	:	B.E/ Electrical and Electronics	Course code &	:	EE6302- Electromagnetic Theory
Program		Engineering	Name		(C203)
Duration	:	June 2017 to Nov 2017	Semester	:	III Section : A & B
Regulation	:	2013	Staff handling	:	A.Marimuthu, Dr A.S.S.Murugan

<u>AIM</u>: To expose the students to the fundamentals of electromagnetic fields and their applications to Electrical Engineering.

OBJECTIVES

- > To introduce the basic mathematical concepts related to electromagnetic vector fields
- > To impart knowledge on the concepts of electrostatics, electrical potential, energy density and their applications.
- To impart knowledge on the concepts of magnetostatics, magnetic flux density, scalar and vector potential and its applications.
- > To impart knowledge on the concepts of Faraday's law, induced emf and Maxwell's equations
- To impart knowledge on the concepts of Concepts of electromagnetic waves and Poynting vector.
 Prerequisites: Mathematics, Physics

<u>COURSE OUTCOMES:</u> After the course, the student should be able to:

Course	Course Outcome	POs	PSOs				
C203.1	Explain the different coordinate systems, and apply Gauss's law	1,	1				
C203.2	Interpret the concepts of Electrostatic fields and apply boundary conditions on Electrostatic						
	field						
C203.3	Develop concepts of Magnetostatic fields and apply boundary conditions.	4	1				
C203.4	Analyze the Maxwell's equations for electromagnetic fields		1				
C203.5	Derive Electromagnetic wave equation and apply the Poynting expression.		1				

S.No	Date	Period	Topics to be Covered	Book No
		[Page No]		
UNIT I E	LECTROSTA	TICS – I	(Ta	rget Periods :9+3)
1.			Sources and effects of electromagnetic fields	T1[3-19]
2.			Co-ordinate systems	T1[29-46]
3.			Vector fields , Gradient, Divergence and Curl,	T1[65-90]
			Theorem's and applications	
4.			Coulomb's Law, Electric field intensity	T1[106-111]
5.			Field due to discrete and continuous charges	T1[113-124]
6.			Gauss's law and application	T1[124-134]
7.			Tutorial	
·			•	Total Planned Periods: 12
			Assignment –I-DOS: Test-I	
UNIT II E	LECTROST	ATICS – II	(Та	rget Periods :9+3)
8.			Electrical potential	T1[135-144]

9.		Electric field and equipotential plots,	T1[688-690]
10.		Uniform and Non-Uniform field, Utilization factor, Electric	T1[170-175]
		field in free space, conductors	
11.		Electric field in Dielectric – dielectric polarization, Dielectric	T1[179-182]
		strength - Electric field in multiple dielectrics	
12.		Boundary conditions, Poisson's and Laplace's equations	T1[190-198]
			T1[209-210]
13.		Capacitance, Energy density	T1[148-152]
			T1[233- 246]
14.		Tutorial	
		Assignment –II-DOS: CIT-I-	
		Total Pla	nned Periods: 12
UNIT III	- MAGNETOSTATICS	(Target Period	ls :9+3)
15.		Magnetic field intensity (H)- Biot-savart's Law	T1[274-276]
16.		H due to straight conductors and circular loop	T1[277-282]
17.		Ampere's Circuit Law, H due to infinite sheet of current	T1[285-288]
18.		Magnetic flux density (B), B in free space, conductor	T1[293-294]
19.		Scalar and vector potential, Lorentz force	T1[296- 298]
			T1[319-322]
20.		Magnetic materials, Magnetization, Magnetic field in multiple media	T1[331-344]
21.		Boundary conditions, Inductance	T1[344-353]
22.		Energy density	T1[353-361]
23.		Magnetic force, Torque,	T1[381-382]
24.		Tutorial	
		Assignment –III-DOS: Test-3	•
		Total Pla	nned Periods: 12
UNIT IV	- ELECTRODYNAMIC F	IELDS (Target Perio	ds:9+3)
25.		Magnetic circuits	T1[361-368]
26.		Faraday's laws	T1[386-387]
27.		Transformer and motional EMF	T1[388-391]
28.		Displacement current	T1[397-399]
29.		Maxwell's equations (differential and integral forms)	T1[400- 402]
30.		Relation between field theory and circuit theory, Applications	Material
31.		Tutorial	
		Total Pla	nned Periods: 12
		CIT-II :	
UNIT V	- ELECTROMAGNETIC V	VAVES (Target Periods :	9+3)
32.		Electromagnetic wave Generation and equations	T1[430- 432]
33.		Wave parameters – velocity – intrinsic impedance –	T1[436- 437]
		propagation constant	
34.		Waves in free space, Lossy and lossless dielectrics –	T1[436- 445]
		conductors-skin depth,	
35.		Poynting vector	T1[454- 458]
		Plane wave reflection and refraction, standing wave,	T1[459- 462]
36.			
36.		Applications	

38.	Content Beyond Syllabus: Electromagnetic Interference (EMI)								
39.	Quiz(I & II)								
	Total Pla								
	CIT-III :								
	NPTEL Website: http://nptel.ac.in/courses/108106073/								

Text /Reference Book

S.No	Title of the Book	Author	Publisher	Year
T1	Elements of Electromagnetics	Mathew N.O .Sadiku	Oxford University	2009
T2	Electromagnetism- Theory and applications	Ashutosh Pramanik	Prentice Hall	2006
Т3	Electromagnetic Field Theory	K.A. Gangadhar, P.M. Ramanthan	Khanna Publications	2007
R1	Schaum's Series Theory and Problems of Electromagnetics Second Edition,	Joseph A. Edminister	Tata McGraw-Hill	2006
R2	Engineering Electromagnetics	William H. Hayt	Tata McGraw Hill	2001
R3	Electromagnetics with Applications,	Kraus and Fleish	McGraw-Hill	1999
R4	Electromagnetic field theory Fundamentals	Bhag Singh Guru and Hüseyin R.	Cambridge University Press	2009

Content Beyond Syllabus Added(CBS)	POs	Unit		
Electromagnetic Interference (EMI)	PO6 (2)	V		

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C203.1	3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
C203.2	3	3	-	1	-	-	-	-	-	-	-	-	2	-	-
C203.3	3	3	1	1	-	-	-	-	-	-	-	-	2	-	-
C203.4	3	3	1	1	-	-	-	-	-	-	-	-	2	-	-
C203.5	3	3	1	-	-	-	-	-	-	-	-	-	2	-	-
C203	3	3	1	1	-	-	-	-	-	-	-	-	2	-	-

STAFF INCHARGE

HOD/EEE

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM - 630 612 Lecture Schedule

Degree/Program: B.E / EEE Semester: III. Section : B Duration: June -Oct 2017 Regulation : 2013(AUC)

Course code: GE6351 Course Name: Environmental Science and Engineering Staff : Dr. Mahalakshmi M. & Dr. J.Sangeetha

Aim: To create awareness in every engineering graduate about the environment& its importance, the effect of technology on the environment and ecological balance.

Prerequisites: Technical English I&II, 4th to 9th grade Environmental Science and geography books **Objectives:**

- 1. To the study of nature and the facts about environment.
- To find and implement scientific, technological, economic and political solutions to environmental 2. problems.
- 3. To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the 4. surrounding environment, its functions and its value.
- 5. To study the dynamic processes and understand the features of the earth's interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management. 6.

COURSE OUTCOMES: After the course, the student should be able to:

		POs	PSOs
C204.1	Define Environment, ecosystem and biodiversity, classify types of ecosystems and outline the impacts to biodiversity.	6,9,12	2,3
C204.2	Define pollution, classify its types, analyze the causes and suggest control measures for pollution.	6,7,8,9,12	2,3
C204.3	Outline various natural resources; explain causes and impacts of destruction of resources.	6,9,12	2,3
C204.4	List various social issues related to land, water and energy; summarize the concerning government acts and rules to overcome these problems.	6,7,9,12	2,3
C204.5	Interpret population explosion and variation among nations, show the impacts of over population and illustrate the methods to mitigate the same.	6,7,8,9,12	2,3

Target Periods - 45 Periods

Targe	t Periods - 4	5 Periods	Curricu	lum: 3L - 0T- 0P
SI. No	Date	Period No.	Topics to be covered	Book Page No.
Uni	it - I ENVIR	ONMENT,	ECOSYSTEMS AND BIODIVERSITY Target Perio	ds : 12
1			Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment	R5(1.2 -1.7)
2			Concept of an ecosystem- Structure and function of an ecosystem ,producers, consumers and decomposers	R5(2.1-2.8)
3			Oxygen cycle and Nitrogen cycle, Energy flow in the ecosystem – Ecological succession process	R5(2.9 -2.17)
4			Introduction, types, characteristic features, structure and function of the forest ecosystem and grassland ecosystem	R5(2.17-2.23)
5			Introduction, types, characteristic features, structure and function of the desert ecosystem and aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)	R5(2.24-2.37)
6			Introduction to biodiversity definition: genetic species and ecosystem diversity- Biogeographical classification of India	R5(3.1-3.5)
7			Value of biodiversity: consumptive use, productive use, Social, ethical, aesthetic and option values – Biodiversity at global, national and local levels	R5(3.6-3.17)
8			India as a mega-diversity nation – hot-spots of biodiversity	R5(3.17-3.22)
9			Threats to biodiversity: habitat loss, poaching of wildlife, man- wildlife conflicts	R5(3.23-3.28)
10			Endangered and endemic species of India, Conservation of biodiversity: In-situ and ex-situ, conservation of biodiversity	R5(3.28-3.40)
11			Field study of common plants, insects, birds.	Notes

		Notes
nssigi	ment No.: I	da • 10
12	Unit II ENVIRONMENTAL POLLUTION Target Perio	
13		R5(4.1-4.14)
	pollution(Atmospheric chemistry- Chemical composition of the	
	atmosphere; Chemical and photochemical reactions in the	
	atmosphere - formation of smog, PAN	
14		R5(4.14-4.24)
	Control of particulate and gaseous emission, Control of SO2,	
	NOX, CO and HC)	
15	Water pollution: Physical and chemical properties of terrestrial	R5(4.24-4.27)
15	and marine water and their environmental significance;	R5(4.36-4.44)
16	Water quality parameters – physical, chemical and biological	R5(4.27-4.36)
17	absorption of heavy metals - Water treatment processes.	R5(4.44-4.54)
18	Soil pollution - soil waste management: causes	R5(4.54-4.64)
		· · ·
19	Effects and control measures of municipal solid wastes	R5(4.64-4.70)
20	Causes, effects and control measures of Noise pollution, and	R5(4.71-4.80)
20	Marine pollution	NJ(4./1-4.80)
21	Causes, effects and control measures of Thermal pollution and	R5(4.80-4.91)
	Nuclear hazards	
22	Role of an individual in prevention of pollution	R5(4.91-4.93)
	Seminar-I & II	(
Assigr	ment No.: II	
U	Unit III NATURAL RESOURCES Target Periods : 10	
23		R5(5.1-5.15)
25	studies- timber extraction,	R5(5.1 5.15)
24	mining, dams and their effects on forests and tribal people	
24	mining, dams and then effects on forests and troat people	
25	Water resources: Use and over-utilization of surface and ground	R5(5.15-5.21)
_	water, dams-benefits and problems	- (/ /
26	Mineral resources: Use and exploitation, environmental effects	R5(5.22-5.33)
20	of extracting and using mineral resources, case studies	10(5.22 5.55)
27		R5(5.33-5.42)
21		K ₃ (3.33-3.42)
	agriculture and overgrazing, effects of modern agriculture,	
	fertilizer-pesticide problems, water logging, salinity, case	
-	studies	
28		R5(5.43-5.68)
	renewable energy sources, use of alternate energy sources.	
29	Energy Conversion processes – Biogas – production and uses,	
	anaerobic digestion; case studies	
20	Land as a resource, land degradation, man induced landslides,	R5(5.68-5.76)
5U	soil erosion and desertification	
50	Role of an individual in conservation of natural resources	R5(5.76-5.80)
	Equitable use of resources for sustainable lifestyles	= (= // 0 0.00)
31		
31	Introduction to Environmental Biochemistry: Proteins –	R5(5 80-5 86)
31	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of	R5(5.80-5.86)
31	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants.	R5(5.80-5.86)
31	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of	R5(5.80-5.86)
31 32	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants.	R5(5.80-5.86)
31 32 Assign	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants. Seminar-III &IV ment No.: III Unit IV SOCIAL ISSUES AND THE ENVIRONMENT Target Per	iods : 07
30 31 32 Assign 33	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants. Seminar-III &IV ment No.: III Unit IV SOCIAL ISSUES AND THE ENVIRONMENT Target Per	
31 32 Assign	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants. Seminar-III &IV ment No.: III Unit IV SOCIAL ISSUES AND THE ENVIRONMENT Target Per	iods : 07
31 32 Assign	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants. Seminar-III &IV ment No.: III Unit IV SOCIAL ISSUES AND THE ENVIRONMENT Target Per From Unsustainable to sustainable development - Urban	iods : 07
31 32 Assign	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants. Seminar-III &IV ment No.: III Unit IV SOCIAL ISSUES AND THE ENVIRONMENT Target Per From Unsustainable to sustainable development - Urban Problems Related to energy – Water conservation, Rain Water Harvesting	iods : 07
31 32 Assign 33	Introduction to Environmental Biochemistry: Proteins – Biochemical degradation of pollutants, Bioconversion of pollutants. Seminar-III &IV ment No.: III Unit IV SOCIAL ISSUES AND THE ENVIRONMENT Target Per From Unsustainable to sustainable development - Urban Problems Related to energy – Water conservation, Rain Water Harvesting	iods : 07 R5(6.1-6.10)

35		Climate Change, Global Warming, Acid Rain, Ozone Layer	R5(6.22- 6.28)
		Depletion, Nuclear Accidents and Holocaust, Case Studies	
36		Wasteland Reclamation – Consumerism and Waste Products	R5(6.28- 6.34)
37		Environment Production Act – Air (Prevention and Control of	R5(6.34-6.38)
		Pollution) Act – Water (Prevention and Control of Pollution)	
		Act	
38		Wildlife Protection Act – Forest Conservation Act	R5(6.38-6.46)
39		Issues Involved in enforcement of Environmental Legislation -	R5(6.46-6.61)
		Public Awareness	
	Unit-V H	UMAN POPULATION AND THE ENVIRONMENT Target Pe	riods : 06
40		Population Growth, Variation among Nations - Population	R5(7.1-7.11)
		Explosion	
41		Family Welfare Programme- Environment and Human Health	R5(7.11-7.17)
42		Human Rights- Value Education- HIV /AIDS	R5(7.17-7.28)
43		Women and Child Welfare	R5(7.28-7.32)
44		Role of Information Technology in Environment and Human	R5(7.3-7.41)
		Health – Case Studies	
45		Revision	
		Quiz	

NPTEL LECTURES

S. No	UNIT	Date[Period]	TOPIC	Ref / Link
1			Air pollution control devices	http://www.gaurishsharma.com/2008/11/nptelhigh-
2			Waste water engineering	quality-free-video-tutorials.html
Te	xt Books a	nd References		

-	_ 01_0 _	sooks and References			
S. N	0	Title of the Book	Author	Publisher	Year
1	T1	Introduction to Environmental Engineering and Science, 2 nd edition	Gilbert M.Masters	earson Education	2004.
2	T2	Environmental Science and Engineering	Benny Joseph	Tata McGraw-Hill, New Delhi	2006
3	R1	Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards Vol. I and II	R.K. Trivedi	Enviro Media	2006
4	R2	Environmental Encyclopedia	Cunningham, W.P. Cooper, T.H. Gorhani	Jaico Publ., House, Mumbai, 2001.	2006
5	R3	Environmental law	. Dharmendra S. Sengar	Prentice hall of India, New Delhi	2007
6	R4	Environmental Studies-From Crisis to Cure		Oxford University Press	2005
7	R5	Environmental Science and Engineering	A.Ravikrishnan	Srikrishna Hitech Publishing company Pvt.Ltd	2014

Mapping of CO's and PO's

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C204.1	-	-	-	-	-	3	-	-	1	-	-	2	-	1	1
C204.2	-	-	-	-	-	3	1	1	1	-	-	3	-	1	1
C204.3	-	-	-	-	-	3	-	-	1	-	-	3	-	1	1
C204.4	-	-	-	-	-	3	2	-	1	-	-	3	-	1	1
C204.5	-	-	-	-	-	3	2	1	1	-	-	3	-	1	1
C204	-	-	-	-	-	3	1	1	1	-	-	3	-	1	1

Content Beyond Syllabus Added(CBS)	POs strengthened / vacant filled	CO / Unit
Ethics and Moral values	PO8(2) Strengthened	C204.5/V
Team based activities	PO9(2) & PO10(2) Strengthened & Vacant filled	C204.2/II,C204.5/V

Degree/Programme : **B.E / EEE** Course code & Name : EC6202 & Electronic Devices and Circuits

Semester : III Staff : M. Jeyamurugan : A & B Section

AIM:

- To explain the structure of the basic electronic devices. •
- To design applications using the basic electronic devices.

OBJECTIVES: The student should be made to:

- Be explaining with the structure of basic electronic devices.
- Be design to the basic electronic devices applications.
- Prerequisites: Circuit theory

<u>COURSE OUTCOMES</u>: After the course, the student should be able to

СО	Course Outcomes	POs	PSOs
C205.1	Draw the characteristics of various types of Diodes, design Half and Full wave Rectifier.	1,2,3,4	1
C205.2	Compare the different configurations of BJT, draw its characteristics.	1,2,3,4	1
C205.3	Calculate the FET parameters, draw its frequency response characteristics.	1,2,3,4,6	1
C205.4	Design amplifier circuits and draw frequency response characteristics	1,2,3,4,6	1
C205.5	Develop the parameters of feedback amplifier circuit, describe different types of oscillator circuits	1,2,3,4,6	1

S. No	Date	Period Number	Topics to be Covered		ook No age No]
UNI	Г – I : PN JU	JNCTION DI	EVICES Target I	Periods : 9+3	=12
1			PN junction diode – circuit symbol, theory, application Structure –Barrier voltage, Depletion region, drift & diffusion current, Junction of P – type & N – type operation - Forward and reverse biased junction	T1[10] T1[16] T1[20] T1[23]	R7(1.1)
2			V-I characteristics - Forward and reverse characteristics, breakdown, diode parameters, equivalent circuit, temperature effect	T1[34] T1[41] T1[47]	R7(1.5)
3			$\begin{array}{l} \textbf{Diffusion} \hspace{0.1 cm} (\textbf{storage}) \hspace{0.1 cm} \textbf{capacitance} \hspace{0.1 cm} \textbf{-} \hspace{0.1 calculation} \hspace{0.1 cm} \textbf{of} \hspace{0.1 cm} C_D \\ \textbf{Transition capacitance} \hspace{0.1 cm} \textbf{-} \hspace{0.1 calculation} \hspace{0.1 cm} \textbf{of} \hspace{0.1 cm} C_T \end{array}$	T1[50]	R7(1.10,14)
4 5			Tutorial-1 Rectifiers – Introduction, types, basic circuit, input & output waveforms, analysis and comparison, application. Half Wave Rectifier – Positive & Negative HWR	- T1[71] T1[72]	- R7(1.16)
6			Full Wave Rectifier – Two diode FWR, Bridge Rectifier	T1[72]	R7(1.23,29)
7			Tutorial-2	-	-
8			Display devices- LED – symbol, construction, operation, characteristics, parameters, application.	T1[945] T1[952]	R7(1.37)
9			Laser diodes - symbol, structure, operation, characteristics, parameters, application.	T1[981]	R7(1.40)
10			Zener diode characteristics - circuit symbol, equivalent circuit, operation, characteristics, application Zener Reverse characteristics – Avalanche & zener Breakdown mechanism, Zener resistance & ratings	T1[59]	R7(1.43,45)
11			Zener as regulator – circuit with no load & loaded regulator, performance	T1[108]	R7(1.48)
12			Tutorial-3	-	-
Tota	al Periods:	12	Assignment - I Date of	Submission :	10.7.17
	18.7.17	1	Test – I - CT-I: 12.7.17 – 19.7.17	Portion :	Unit – 1
UNI	$\Gamma - II : TRA$	NSISTORS	Target I	Periods : 9+3	=12
13			BJT- structure - PNP & NPN construction, biasing operation – PNP & NPN - transistor configuration and operation, transistor as an amplifier, comparison characteristics – CE, CB & CC configuration circuit, current gain characteristics, h-parameters	T1[143]	R7(2.2)
14			BJT Biasing – needs of biasing, DC Load line, Q point, thermal runaway, methods & comparison of biasing	T1[180]	R7(2.68)
15		T	Tutorial-4	-	-

				1	· · · · · · · · · · · · · · · · · · ·
			JFET- structure – P channel & N channel, application		
			Operation - P channel & N channel, comparison		
16			Characteristics – depletion region, CS, CD & CG	T1[345]	R7(2.27)
			configuration, Transfer and drain characteristics with $V_{GS} = 0v$		
			& external bias		
17			JFET Biasing - DC Load line, Q point, effect of source	T1[200]	D7(2 125)
17			resistor, methods & comparison of biasing	T1[380]	R7(2.125)
18			Tutorial-5	-	-
-			MOSFET- structure – N channel and P channel of E-		
			MOSFET & D-MOSFET		
19			Operation & characteristics - E-MOSFET & D-MOSFET,	T1[367]	R7(2.40)
			comparison		
20			MOSFET Biasing - methods & comparison of biasing	T1[417]	R7(2.152)
20			Tutorial-6	11[41/]	K 7(2.152)
21				-	-
22			UJT – Structure - circuit symbol, equivalent circuit	TT1[027]	D7(0.174)
22			Characteristics - operation, parameter,	T1[927]	R7(2.174)
			UJT relaxation oscillator – frequency of oscillation		
			Thyristor – Introduction, PNPN diode analogy, SCR control		
23			circuits, applications	T1[893]	R7(2.182)
			Structure and characteristics of SCR		
24			IGBT – symbol,	_	R7(2.200)
24			Structure and characteristics - operation	_	K 7(2.200)
25			Tutorial	-	-
Tota	al Periods:	12+1	Assignment - II Date of S	Submission :1	2.8.17
	6.8.17	1,2	Test – II - CIT-II: 31.7.17-7.8.17	Portion :	Unit –I, II
UNIT	T – III : AMP			Periods : 9+3	
01112			BJT small signal model – Two port network, hybrid parameter,		
			hybrid model for different configurations, classification of BJT		
26			amplifier, analysis of transistor amplifier circuit using h	T1[238]	R7(3.1)
			parameters, characteristics, comparison, application		
27			Analysis of CE amplifiers – Single stage circuit, hybrid	T1[254]	D7(2, 27)
27			parameter equivalent circuit, input impedance, output	T1[254]	R7(3.27)
20			impedance, voltage gain, current gain		
28			Tutorial-7		
• •			Analysis of CB amplifiers – Single stage circuit, hybrid		
29			parameter equivalent circuit, input impedance, output	T1[268]	R7(3.40)
			impedance, voltage gain, current gain		
			Analysis of CC amplifiers – Single stage circuit, hybrid		
30			parameter equivalent circuit, input impedance, output	T1[263]	R7(3.43)
			impedance, voltage gain, current gain		
31			Tutorial-8		
20			MOSFET small signal model - , hybrid model for different	T1[425]	D7(2.70)
32			configurations, comparison	T1[435]	R7(3.70)
			Analysis of CS - Single stage circuit, hybrid parameter		
33			equivalent circuit, input impedance, output impedance, voltage	T1[439]	R7(3.78)
			gain, current gain	[.07]	
			Analysis of Source follower - Single stage circuit, hybrid	1	
34			parameter equivalent circuit, input impedance, output	T1[448]	R7(3.82)
54			impedance, voltage gain, current gain	11[770]	1(3.02)
35			Tutorial-9		
33				-	-
26			Gain and frequency response – cut off frequency, Bandwidth,	T1[214]	D7(2.52)
36			miller effect, effect of Coupling and bypass capacitor, low	T1[314]	R7(3.52)
~-			frequency response of BJT		
37			High frequency analysis - frequency response of FET	T1[460]	R7(3.90)
38			Tutorial	-	-
	al Periods:	12+1		Submission :	
1	27.8.17	1	Test – III - CT-II: 21.8.17-28.8.17	Portion :	Unit – III
					-12
		TISTAGE A	MPLIFIERS AND DIFFERENTIAL AMPLIFIER Target 1	Periods : 9+3	-14
UNII		TISTAGE A	0		
		TISTAGE A	BIMOS cascade amplifier – block diagram, coupling schemes,	T1[505]	R7(4.1)
UNI 39		TISTAGE A	BIMOS cascade amplifier – block diagram, coupling schemes, BJT-FET consideration, general analysis		R7(4.1)
UNIT		TISTAGE A	BIMOS cascade amplifier – block diagram, coupling schemes, BJT-FET consideration, general analysis Differential amplifier – voltage gain, CMRR, DC analysis of	T1[505]	
UNI 39		TISTAGE A	BIMOS cascade amplifier – block diagram, coupling schemes, BJT-FET consideration, general analysis		R7(4.1)

			approximate h-model, input & output impedance		
			FET input stages – DC & AC analysis of JFET source coupled		
42			pair	R6[361]	R7(4.25)
43			Tutorial-10	_	_
			Single tuned amplifiers – ideal circuit, Q factor, capacitor		DE(1.01)
44			coupled load	T1[524]	R7(4.31)
45			Gain and frequency response – double tuned circuits,	T1[524]	D7 (4, 1)
43			comparison, application		R7(4.1)
46			Neutralization methods - operation	R6[482]	R7(4.40)
47			Tutorial-11	-	-
48			Power amplifiers – types - Circuit diagram, operation,		R7(4.42)
10			advantages, disadvantages, application	T1[807]	IC/(1.12)
49			Qualitative analysis of Power amplifiers – efficiency,	11[007]	R7(4.48)
			distortion		107(1110)
50			Tutorial-12	-	-
	al Periods:	12	Quiz	C205.4	-
	<i>16.9.17</i>	<i>1,2</i>	<i>Test – IV - CIT-II: 11.9.17-18.9.17</i>	Portion : U	,
UNII	I – V : FEEL	DBACK AN		Periods : 9+3	5=12
51			Advantages of negative feedback Amplifier – basic concept,	T1[544]	R7(5.10)
			 classification, characteristics Voltage series feedback – identifying topology, to find the i/p 		
52			voltage series reedback – identifying topology, to find the $1/p$ & o/p circuit, A & β , D, A _f , R _{if} , R _{of}	T1[545]	R7(5.8,29)
			Current series feedback – identifying topology, to find the i/p		
53			$\&$ o/p circuit, A $\&$ β , D, A _f , R _{if} , R _{of}	T1[569]	R7(5.8,31)
54			Tutorial-13		
			Voltage shunt feedback – identifying topology, to find the i/p		
55			& o/p circuit, A & β , D, A _f , R _{if} , R _{of}	R6[570]	R7(5.9,37)
5.0			Current shunt feedback – identifying topology, to find the i/p	m1(67.6)	D7(5.0.24)
56			& o/p circuit, A & β , D, A _f , R _{if} , R _{of}	T1[576]	R7(5.9,34)
57			Tutorial-14	-	-
58			Positive feedback - classification,	D6[509]	D7(5 42 45)
20			Condition for oscillations	R6[508]	R7(5.43,45)
			Phase shift oscillators, Wien bridge oscillators - circuit		
59			diagram, working, analysis, advantages, disadvantages,	R6[593]	R7(5.48,61)
			application		
			Hartley, Colpitts oscillators – general form of LC oscillator,		
60			circuit diagram, working, analysis, advantages, disadvantages,	R6[580]	R7(5.80,86)
			application		
61			Crystal oscillators - circuit diagram, working, analysis,	R6[609]	R7(5.97)
01			advantages, disadvantages, application	_	· · · · ·
-			Tutorial-15 Seminar	- C205.5	-
62	Domicidae	10	1 Nemunul	L U205.5	-
62 Tota	al Periods:	12			Laid V
62 Tota	al Periods: 5.10.17	12 1	Test – V - CT-III: 3.10.17-5.10.17	Portion : U	Init – V
62 Tota				Portion : U CO205.1,	nit – V PO5,PO7
62 Tota			Test – V - CT-III: 3.10.17-5.10.17	Portion : U	

NPTEL:

Unit	http://nptel.ac.in/courses/webcourse-contents/electronics/		Module No.	Lecture No.
Ι	PN Diode	IIT, Kharagpur	01	02
	LED	IIT, Bombay	01	31
Π	BJT	IIT, Kharagpur	01	03
III	FET & MOSFET	IIT, Delhi	05	02
IV	Differential Amplifiers	IIT, Delhi	07	09
V	Feedback configurations & Multistage amplifier	IIT, Delhi	01	04
	Oscillators	IIT, Madras	02	10

S. N	No	Title of the Book	Author	Publisher	Year
1	T1	Electronic Devices and Circuits	David A. Bell	Prentice Hall of India	2004
2	T2	Microelectronic Circuits	Sedra and smith	Oxford University Press	2004
3	R1	Micro Electronic Circuits	Rashid	Thomson publications	1999
4	R2	Electron Devices	Floyd	Pearson Asia 5th Edition	2001
5	R3	Electronic Circuit Analysis and Design	Donald A Neamen	Tata McGraw Hill, 3rd Edition	2003
6	R4	Electronic Devices and Circuit theory	Robert L.Boylestad		2002
7	R5	Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation	Robert B. Northrop	CRC Press	2004
8	R6	Electronic Devices and Circuits	S.Shalivahanan N.Suresh Kumar	McGraw Hill Education (India) Pvt. Ltd, 3rd Edition	2014
9	R 7	Electronic Devices and Circuits	T.Joel	Sruthi Publishers	2014

Mapping of Course Outcomes (COs), Course (C), Program Specific Outcomes (PSOs) with Program Outcomes. (POs) – Before CBS

			/												
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C205.1	2	1	1	2	-	-	-	-	-	-	-	-	2	-	-
C205.2	2	2	2	2	-	-	-	-	-	-	-	-	2	-	-
C205.3	2	2	2	2	-	1	-	-	-	-	-	-	2	-	-
C205.4	2	2	1	2	-	1	-	-	-	-	-	-	2	-	-
C205.5	2	3	1	2	-	1	-	-	-	-	-	-	2	-	-
C205	2	2	2	2	-	1	-	-	-	-	-	-	2	-	-

Content Beyond Syllabus Added(CBS)	POs strengthened / vacant filled	CO / Unit
Diode testing & Evaluation - Demonstration	PO5,PO7-(1) / vacant filled	C205.1 / I
Transistor testing & Evaluation - Demonstration	PO5,PO7-(1) / vacant filled	C205.2 / II

STAFF INCHARGE

HOD/EEE

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM - 630 612

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Lecture Schedule

Course/Branch	ı :	B.E / EEE	Subject	:	Linear Integrated Circuits & Applications
Duration	:	July – Oct 2017	Subject Code	:	EE6303
Semester	:	III Section : A&B	Staff Handling	:	S. Rajalingam
Regulation	:	2013 [AUC]			

AIM

To expose the students to the concepts of fabrication of ICs, characteristics & applications of OP-AMP, functions of special ICs & its applications.

OBJECTIVES

The students should be made:

- To study the IC fabrication procedure.
- To study characteristics; realize circuits; design for signal analysis using OP-ampICs.
- To study the applications of OP-amp.
- To study the internal functional blocks and the applications of special ICs like Timers, PLL circuits, regulator Circuits, ADCs.

<u>PRE-REQUISITE</u>: Circuit Theory

<u>COURSE OUTCOMES</u>: After the course, the student should be able to:

Course	Course Outcome	POs	PSOs
C206.1	Explain the procedure for the fabrication of IC.		
C206.2	Summarize the DC & AC characteristics of Operational amplifier.	1 0 0 6 10	1
C206.3	Discuss the applications of Operational amplifier.	1,2,3,6,12	1
C206.4	Describe the internal functional blocks of special ICs like Timer and PLL.		
C206.5	Classify types of voltage regulators and describe the special ICs.		

Target Periods - 45 Periods

Curriculum: 3L - 0T- 0P

S.No	Date	Period Number	Topics to be Covered	Book No [Page No]
UNIT I			IC FABRICATION Targe	et Periods : 10 + 1
1.			Introduction	T2 (01-02)
2.			IC classification	T2 (01-02)
3.			Fundamental of monolithic IC technology	T2 (03-04)
4.			Epitaxial growth	T2 (06)
5.			Masking and Etching, Diffusion of impurities	T2 (07-09)
6.			Realization of monolithic ICs and packaging	T2 (12-13)
7.			Fabrication of Diodes	T2 (20-25)
8.			Fabrication of Resistance	T2 (20-25)
9.			Fabrication of Capacitance	T2 (25-27)
10			Fabrication of FETs	T2 (27-30)
11.			Technical Quiz – I	
UNIT II	[CHARACTERISTICS OF OP-AMP	Target periods : 11 + 1
12.			Ideal OP – AMP characteristics	T2 (41-52)
13.			DC characteristics: Offset voltage, current, bias current	nt T2 (104-111)
14.			7	
15.			AC characteristics: Gain Bandwidth, Slew rate	T2 (111-127)
16.			Differential Amplifier	T2 (50 - 52)
17.			Frequency response of OP-AMP	T2 (112-114)

Format No.:11 Issue No.: 02 Revision No.: 01 Date: 23/06/12

18.	Basic applications of op-amp: Inverting Amplifier, Non- Inverting Amplifier	T3 (90) T3 (102)
19.	V/I and I/V converters	T2 (146 - 147)
20.	Summer circuit	T2 (135-137)
21.	Differentiator	T2 (164-168)
22.	Integrator	T2 (168 – 175)
23.	Technical Seminar – I	
UNIT-III	APPLICATIONS OF OP-AMP	
Target Periods : 12 + 2	l l	
24.	Instrumentation amplifier	T2 (141-144)
25.	Log and Antilog Amplifiers	T2(155 - 159)
26.	First and second order active filters	T2 (262-282)
27.	Comparators	T2 (207-212)
28.	Multivibrators	T2 (216-220)
29.	Waveform generators	T2 (220-222)
30.	Clippers, Clampers & Peak detector	T2 (151-153)
31.	S/H circuit	T2 (153-154)
32.	D/A converter $(R - 2R$ ladder and weighted resistor	T2 (349-357)
33.	types)	
34.	A/D converter using op-amp	T2 (357-366)
35.		
36.	Content Beyond Syllabus: "Design and implementation of Industrial applications".	Linear ICs for
UNIT IV	SPECIAL ICs Target Periods:	0 ± 1
37.	555 Timer circuit – Functional block	T2 (311-312)
38.		
38. 39.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications	T2 (311-312) T2 (312-324)
38. 39. 40.	555 Timer circuit – Functional block	T2 (311-312)
38. 39. 40. 41.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications IC 566 – Voltage controlled oscillator circuit	T2 (311-312) T2 (312-324) T2 (334-336)
38. 39. 40.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications	T2 (311-312) T2 (312-324)
38. 39. 40. 41. 42. 43.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning	T2 (311-312) T2 (312-324) T2 (334-336) T2 (337-342)
38. 39. 40. 41. 42. 43. 44.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications	T2 (311-312) T2 (312-324) T2 (334-336) T2 (337-342) T2 (342-345)
38. 39. 40. 41. 42. 43.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs	T2 (311-312) T2 (312-324) T2 (334-336) T2 (337-342)
38. 39. 40. 41. 42. 43. 44.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications	T2 (311-312) T2 (312-324) T2 (334-336) T2 (337-342) T2 (342-345)
38. 39. 40. 41. 42. 43. 44. 45. 46. UNIT V	555 Timer circuit – Functional block 555 Timer - Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II APPLICATION ICs	T2 (311-312) T2 (312-324) T2 (334-336) T2 (337-342) T2 (342-345) T2 (159-160) ds: 9 + 1
38. 39. 40. 41. 42. 43. 44. 45. 46. UNIT V 47.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II	T2 (311-312) T2 (312-324) T2 (334-336) T2 (337-342) T2 (342-345) T2 (159-160)
38. 39. 40. 41. 42. 43. 44. 45. 46. UNIT V 47. 48.	555 Timer circuit – Functional block 555 Timer - Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II APPLICATION ICs Target Perio IC voltage regulators LM78XX / 79XX	T2 (311-312) T2 (312-324) T2 (334-336) T2 (337-342) T2 (342-345) T2 (159-160) ds: 9 + 1 T2 (241-248)
38.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II APPLICATION ICs Target Perio IC voltage regulators LM78XX / 79XX	$\begin{array}{c c} T2 (311-312) \\ T2 (312-324) \\ \hline T2 (334-336) \\ \hline T2 (337-342) \\ \hline T2 (342-345) \\ \hline T2 (159-160) \\ \hline \\ $
38. 39. 40. 41. 42. 43. 44. 45. 46. UNIT V 47. 48. 49. 50.	555 Timer circuit – Functional block 555 Timer - Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II APPLICATION ICs Target Perio IC voltage regulators IC 723 Variable voltage regulators	T2 (311-312) T2 (312-324) T2 (334-336) T2 (337-342) T2 (342-345) T2 (159-160) ds: 9 + 1 T2 (241-248) T3 (457) T2 (248-255)
38. 39. 40. 41. 42. 43. 44. 45. 46. UNIT V 47. 48. 49. 50. 51.	555 Timer circuit – Functional block 555 Timer - Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II APPLICATION ICs Target Perio IC voltage regulators LM78XX / 79XX LM317 – Fixed voltage regulators IC 723 Variable voltage regulators Switching regulator	T2 (311-312) T2 (312-324) T2 (334-336) T2 (337-342) T2 (342-345) T2 (159-160) ds: 9 + 1 T2 (241-248) T3 (457) T2 (248-255) T2 (255-258)
38. 39. 40. 41. 42. 43. 44. 45. 46. UNIT V 47. 48. 49. 50. 51. 52.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II APPLICATION ICs Target Perio IC voltage regulators IC 723 Variable voltage regulators Switching regulator SMPS	$\begin{array}{c c} T2 (311-312) \\ T2 (312-324) \\ \hline T2 (334-336) \\ \hline T2 (337-342) \\ \hline T2 (337-342) \\ \hline T2 (342-345) \\ \hline T2 (159-160) \\ \hline \\ $
38. 39. 40. 41. 42. 43. 44. 45. 46. UNIT V 47. 48. 49. 50. 51. 52. 53.	555 Timer circuit – Functional block 555 Timer - Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II APPLICATION ICs Target Perio IC voltage regulators IC 723 Variable voltage regulators SWIPS LM 380 power amplifier	$\begin{array}{c c} T2 (311-312) \\ T2 (312-324) \\ \hline T2 (334-336) \\ \hline T2 (337-342) \\ \hline T2 (337-342) \\ \hline T2 (342-345) \\ \hline T2 (159-160) \\ \hline \\ $
38. 39. 40. 41. 42. 43. 44. 45. 46. UNIT V 47. 48. 49. 50. 51. 52. 53. 54.	555 Timer circuit – Functional block 555 Timer- Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II APPLICATION ICs Target Perio IC voltage regulators IC 723 Variable voltage regulators Switching regulator SMPS	$\begin{array}{c c} T2 (311-312) \\ T2 (312-324) \\ \hline T2 (334-336) \\ \hline T2 (337-342) \\ \hline T2 (337-342) \\ \hline T2 (342-345) \\ \hline T2 (159-160) \\ \hline \\ $
38. 39. 40. 41. 42. 43. 44. 45. 46. UNIT V 47. 48. 49. 50. 51. 52. 53.	555 Timer circuit – Functional block 555 Timer - Characteristics and applications IC 566 – Voltage controlled oscillator circuit IC 565 – Phase lock loop circuit functioning IC 565 – Applications Analog multiplier ICs Technical Seminar - II APPLICATION ICs Target Perio IC voltage regulators IC 723 Variable voltage regulators SWIPS LM 380 power amplifier	$\begin{array}{c c} T2 (311-312) \\ T2 (312-324) \\ \hline T2 (334-336) \\ \hline T2 (337-342) \\ \hline T2 (337-342) \\ \hline T2 (342-345) \\ \hline T2 (159-160) \\ \hline \\ $

Books: Text/Reference

S.	No.	Title of the Book	Author	Publisher	Year
1.	T1	OP-AMP & Linear ICs	David A. Bell	Oxford	2013
2.	T2	Linear Integrated Circuits	D. Roy Choudhary, Sheil B.Jani	New Age (IV Edition)	2003
3.	Т3	OP-AMPS and Linear Integrated Circuits	Ramakant A. Gayakward	Pearson Education/PHI (IV Edition)	2003
4.	R1	OP-AMPs & Linear Integrated Circuits Concepts & Applications	Fiore	Cengage	2010
5.	R2	Fundamentals of Analog Circuits	Floyd, Buchla	Pearson	2013
6.	R3	Integrated Electronics - Analog and Digital Circuits System	Jacob Millman, Christos C.Halkias	Tata McGraw Hill	2003
7.	R4	OP - AMP and Linear ICs	Robert F. Coughlin, Fredrick F. Driscoll	PHI Learning, (VI Edition)	2012

NPTEL LECTURES

S. No	UNIT	Date[Period]	TOPIC	Ref / Link
1	II	04.10.16[1]	Ideal Operational Amplifier	http://www.youtube.com/watch?v=uHQmNWbtwHU
2	III	05.10.16[2]	Applications of OP-AMP	http://www.youtube.com/watch?v=nqk714QpRos
3	IV	06.10.16[3]	Voltage Controlled Oscillator	https://www.youtube.com/watch?feature=player_emb edded&v=KeNUgpw8-yM

SELF-STUDY TOPICS

S. No	UNIT	TOPIC	Books to be referred
1	II	Adder - Subtractor	Ramakant A.Gayakward, 'Op-amps and Linear Integrated
			Circuits', IV Edition, Pearson Education, 2003 / PHI. 2000.
2	III	Triangular Wave Generator	D.Roy Choudhary, Sheil B.Jani, 'Linear Integrated Circuits', IV Edition, New Age, 2003.
3	V	Advantages & Disadvantages of SMPS	David A.Bell, 'Op-amp & Linear ICs', Oxford, 2013

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C206.1	2	1	1	-	-	1	-	-	-	-	-	1	1	-	-
C206.2	2	1	1	-	-	1	-	-	-	-	-	1	1	-	-
C206.3	2	1	1	-	-	1	-	-	-	-	-	1	1	-	-
C206.4	2	1	1	-	-	1	-	-	-	-	-	1	1	-	-
C206.5	2	1	1	-	-	1	-	-	-	-	-	1	1	-	-
C206	2	1	1	-	-	1	-	-	-	-	-	1	1	-	-

Content Beyond Syllabus Added(CBS)	POs strengthened / vacant filled	CO / Unit
Design & Implementation of Linear ICs for	PO3(2) (Strengthened) &	C206.3 / III
Industrial applications	PO9(1) (vacant filled)	

K.L.N.COLLEGE OF ENGINEERING –POTTAPALAYAM

DEPARTMENT OF MATHEMATICS

Sub code/ Subject: MA6351- Transforms and Partial differential equations

IMPORTANT PART –A & PART –B QUESTIONS

UNIT-I PARTIAL DIFFERENTIAL EQUATIONS

<u>PART-A</u> 1.Form a partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $Z = (x^2 + a^2)(y^2 + b^2).$

2. Form a partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $\log(az-1) = x + ay + b$.

3. Find the partial differential equation of all sphere whose centre lie on the x axis.

4. Form a partial Differential Equation by eliminating the arbitrary function from the relation $Z = xy + f(x^2 + y^2)$

5. Form the partial differential equation by eliminating the arbitrary function 'f' from

$$z = e^{ay}f(x+by)$$

6. Find the General solution of $\frac{\partial^2 z}{\partial x^2} = 0$ 7. Find the complete integral of $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$ 8.Solve : $(D^4 - D'^4)z = 0$ 9.Find the particular integral of $[D^2 + 3DD' + 2{D'}^2]z = x + y$ 10.Solve (D + D' - 1)(D - 2D' + 3)z = 0

PART-B

- 1. Find the partial differential equations of all planes which are at a constant distance k' units from the origin.
- 2. Form the partial differential equation by eliminating the arbitrary function f' and d' from the relation $z = xf\left(\frac{y}{x}\right) + y\phi(x)$.
- 3. Find the singular integral if $z = px + qy + \sqrt{1 + p^2 + q^2}$
- 4. Solve $z = px + qy + p^2q^2$ and obtain its singular solution.
- 5. Solve $z^2 = 1 + p^2 + q^2$
- 6. Solve $p^2 y(1 + x^2) = qx^2$.

7. Solve the Lagrange's equation $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$. 8. Solve the Lagrange's equation $(z^2 - 2yx - y^2)p + (xy + zx)q = xy - zx$. 9. Solve $(D^2 + 2DD' + D'^2)z = x^2y + e^{x-y}$ 10. Solve $(D^3 - 7DD'^2 - 6D'^3)z = sin(x + 2y)$

UNIT-II FOURIER SERIES

PART-A

1. State the sufficient conditions for the existence of Fourier series.

2. If
$$(\pi - x)^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$$
 in $0 < X < 2\pi$, then deduce that the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

3. The instantaneous current at time of an alternating current wave is given by

 $i = I_1 \sin(\omega t + \alpha_1) + I_3 \sin(3\omega t + \alpha_3) + I_5 \sin(5\omega t + \alpha_5) + \dots$ Find the effective value of the current 'i' □

- 4. If the Fourier series of the function f(x)=x, $-\pi < x < \pi$ with period 2π is given by $f(x)=2(\sin x \frac{\sin 2x}{2} + \frac{\sin 3x}{2} \frac{\sin 4x}{2} + \cdots)$, then find the sum of the series $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots$
- 5. Find the root mean square value of f(x) = x(1-x) in $0 \le x \le 1$
- 6. Find the sine series of function $f(x)=1, 0 \le x \le \pi$.
- 7. Find the sum of the Fourier series for $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2, & 1 < x < 2 \end{cases}$ at x = 1
- 8. Determine b_n in the Fourier series expansion of $f(x) = \frac{1}{2}(\pi x)$ in $0 < x < 2\pi$ with period 2π
- 9. If the Fourier series of the function $f(x)=x+x^2$ in the interval $(-\pi,\pi)$ is
- $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \left\{ \frac{4}{n^2} \cos nx \frac{2}{n} \sin nx \right\}$ then find the value of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$
- 10. What do you mean by harmonic analysis?

- **<u>PART-B</u> 1.** Find the Fourier series of $f(x) = x^2 \pi < x < \pi$, Hence deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 2. Find the half range cosine series expansion of $(x-1)^2$ in 0 < x < 1.

3.Compute the first two harmonics of the Fourier series of f(x) from

X	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{3\pi}{3}$	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	$\frac{6\pi}{3}$
у	1.0	1.4	1.9	1.7	1.5	1.2	1.0

4. Obtain the Fourier cosine series expansion of f(x)=x in 0 < x < 4. Hence deduce the value of $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$

5. Find the Fourier series expansion of $f(x) = |\sin x|$ in $-\pi < x < \pi$ of periodicity 2π .

- 6. Find the complex form of the Fourier series $f(x) = e^{-x}$ in -1 < x < 1.
- 7. Find the complex form of $f(x)=e^{ax}$ in the interval $(-\pi, \pi)$ where a is a real constant. Hence

deduce that $\sum_{n=1}^{\infty} \frac{(-1)^n}{a^2+b^2} = \frac{\pi}{a \sinh a\pi}$.

8. Find the Fourier series of $f(x) = (\pi - x)^2 in \Box(0, \pi)$ Hence find the sum of the series $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \dots$

$$1^4$$
 2^4 3^4

9. Find the fourier cosine series up to third harmonic for y = f(x) from the following values.

Ī	х	0	1	2	3	4	5
	у	4	8	15	7	6	2

10. Expand $f(x)=x^2$ as a Fourier series in the interval $(-\pi, \pi)$ and hence deduce that

1	1	1	1	$-\pi^4$
1^4	2^{4}	3 ⁴	4^{4}	$-\frac{1}{90}$

UNIT – III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

PART-A

- Classify the Partial Differential Equations $(1-x^2)z_{xx} 2xy z_{xy} + (1-y^2)u_{yy} + xz_x + 3x^2y z_y 2z = 0$. Write down various possible solutions of one dimensional heat flow equations. 1.
- 2.
- Solve the equations $3x \frac{\partial u}{\partial x} 2y \frac{\partial u}{\partial y} = 0$ by the method of separation of variables. 3.
- Write all possible solutions of two dimensional heat equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$ 4.
- A rod 30 cm long has its end A and B kept at 20^oC and 80^oC respectively, until steady state 5. conditions prevail. Determine the temperature when steady state prevails.
- 6. State the three possible solutions of the one dimensional heat flow (unsteady state) equation. Classify the p.d.e $u_{xx} + u_{xy} = f(x,y)$.
- 7. State the assumptions in deriving one dimensional wave equation.
- Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6^{e-3x}$. 8.
- 9. Write down one dimensional heat equation and a suitable separable solution for the same
- 10. State Fourier law of heat conduction.

Part-B

- 1. A square plate is bounded by the lines x=0, x=a, y=0 and y=b. If surfaces are insulated and the temperature along y=b is kept at 100° C while the temperature along other three edges at 0°C Find the study state temperature at any point in the plate.
- 2. A tightly stretched string with fixed end points x=0 and x=l is initially at rest in it equilibrium position and motion is started by giving each of its points is given a

velocity V =
$$\begin{cases} \frac{2kx}{l} & 0 < x < \frac{1}{2} \\ \frac{2k(l-x)}{l} & \frac{1}{2} < x < l \end{cases}$$
 Find the displacement of the string .

- 3. A metal bar 10cm long with insulated sides has its ends A and B kept at 50°C and 100 °C, respectively, until steady state conditions prevail. The temperature at A is suddenly raised at 90°C at the same time lowered to 60°C at B. Find the resulting temperature distributed in the bar at time t
- 4. Solve $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$ subject to the condition u(0,t)=0=u(1,t), t > 0 $u(x,0)=\begin{cases} x & 0 \le x \le \frac{1}{2} \\ (1-x) & \frac{1}{2} < x < 1 \end{cases}$ 5. A string is stretched and fastened to two points l apart. Motion is started by displacing the string
- 5. A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = k(lx x^2)$ and then released it from this position at time t=0.Find the displacement of the string of the point at a distance of x from one end at time t.
- 6. A tightly stretched string of length l with fixed end points is initially at rest in its equilibrium position. If it is set vibrating by giving each point a velocity $y_t(x,0)=v_0 \sin \frac{3\pi x}{1} \cos \frac{\pi x}{1}$ where

0<x<l. Find the displacement of the string of the point at a distance of x from one end at time

7. A square plate is bounded by the lines x = 0 and x = 20 y=0 and y = 20. Its faces are insulated. The temperature along the upper horizontal edge is given by

u(x, 20) = x(20 - x), 0 < x < 20 while the other two edges are kept at 0°C. Find the steady state temperature distribution u(x,y) in the plate.

- 8. Find the displacement of a string stretched with two fixed end points at a distance of 2l apart when the string is initially at rest in its equilibrium position and points of the string are given initial velocities where $v = \frac{x}{l}$, $\begin{cases} (0,l) \\ \frac{2l-x}{l} \end{cases}$ (1,2l), x being the distance measured from one end.
- 9. A tightly stretched string of length 2l is fastened at x=0 and x=2l the midpoint of the string is then taken to height 'b ' transversely and then released in that position. Find the lateral displacement of the string.
- 10. A rectangular plate with insulated surface is 20cm wide and so long compared to its width that it may be considered infinite in length without introducing appreciable error. The temperature at short edge x=0 is given by $u = \begin{cases} 10y & 0 \le x \le 10\\ 10(20-y) & 10 \le x \le 20 \end{cases}$ and the two long edges as well as the other short edge are kept at 0°C. Find the steady state temperature distribution u(x,y) in the plate.

UNIT-IV FOURIER TRANSFORM

PART-A

- 1. Find the Fourier Sine Transform of $f(x) = \frac{1}{x}$
- 2. State Fourier Integral Theorem
- 3. State and Prove Shifting Property: $F[f(x a)] = e^{ias}F(s)$
- 4. Evaluate $\int_0^\infty \frac{s^2 ds}{(s^2 + a^2)(s^2 + b^2)}$; a > 0; b > 0
- 5. Prove that $F[f(ax)] = \frac{1}{|a|} F\left[\frac{s}{a}\right] a > 0$
- 6. Prove that $F_c[f(ax)] = \frac{1}{a}F_c[\frac{s}{a}]$

8. Find the Fourier Transform of $f(x) = \begin{cases} 1 & in|x| < a \\ 0, & in|x| > a \end{cases}$ 9. Prove that $F_c[f(x)cosax] = \frac{1}{2} [F_c(s+a) + F_c(s-a)]$ 10. If $f(x)=e^{-ax}$, a<0 find Fourier Sine Transform of f(x)

PART-B

- 1. Find the fourier transform of $f(x) = \begin{cases} a^2 x^2, & |x| < a \\ 0, & |x| > a , a > 0 \end{cases}$ Hence evaluate i) $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$ ii) $\int_0^\infty (\frac{x \cos x - \sin x}{x^3})^2 dx$ 2. Find the Fourier transform of f(x) if $f(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a > 0 \end{cases}$. Hence deduce that $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right) dt = \frac{\pi}{2}$ 3. Find the fourier transform of $f(x) = \begin{cases} a - |x| & |x| < a \\ 0 & |x| > a \\ a > 0 \end{cases}$ hence deduce that $\int_0^\infty \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2}$ 4. Find the fourier sine transform of $f(x) = \begin{cases} x, \text{ in } 0 < x < 1 \\ 2 - x, \text{ in } 1 < x < 2 \\ 0, \text{ in } x > 2 \end{cases}$ 5. Find the fourier sine and cosine transform for x^{n-1} and hence deduce that $\frac{1}{\sqrt{x}}$ is self reciprocal under both the transforms. Hence find $F\left(\frac{1}{\sqrt{|y|}}\right)$. 6. Evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)(x^2+b^2)}$; a, b > 07. Use Parseval's identity for fourier Cosine and Sine transform for e^{-ax} (i) $\int_0^\infty \frac{dx}{(x^2+a^2)^2}$ (ii) $\int_0^\infty \frac{x^2 dx}{(x^2+a^2)^2}$
- 8. Verify the convolution theorem for fourier transform if $f(x) = g(x) = e^{-x^2}$ 9. Find the fourier Cosine transform of $e^{-a^2x^2}$, for a > 010. Show that $e^{\frac{-x^2}{2}}$ is a self reciprocal with respect to fourier transform.

UNIT-5 Z-TRANSFORM

PART-A

1. Find the Z-transform of n

2. State the initial value theorem in Z-transform.

3. State Convolution theorem on Z-transform.

4.If $Z{f(n)} = F(z)$, then show that $Z[a^n f(n)] = F(Z/a)$

5. Find the Z transform of $\frac{1}{(n+1)}$

- 6. Find $z\{(\cos\theta + i\sin\theta)^n\}$
- 7. Find the Z-transform of $\frac{1}{n!}$

8.Find $z\left[\frac{1}{n(n+1)}\right]$

9.Find $Z(a^n)$

10. Find the z-transform of n^2

PART-B

1. Find $Z[\cos n \theta]$ and $Z[\sin n \theta]$. 2. Find the Z transform of $\frac{1}{n(n+1)}$ for $n \ge 1$ 3. Find the inverse Z transform of $\frac{z^{2+z}}{(z-1)(z^{2}+1)}$, using Partial fraction 4. Using Z-transform, Solve $u_{n+2} - 3u_{n+1} + 2u_n = 0$ given $u_0 = 0, u_1 = 1$ 5. Using Convolution theorem find the inverse Z-transform of $\frac{z^2}{(z-\frac{1}{2})(z-\frac{1}{4})}$ 6. Solve the difference equation x(n+2) - 3x(n+1) + 2x(n) = 0 given that x(0) = 0, x(1) = 17. Using Residue method, Find $Z^{-1}\left[\frac{z}{z^2-z+2}\right]$ 8. Find $Z[r^n \cos n \theta]$ and $Z^{-1}[(1 - az^{-1})^{-2}]$ 9. If $U(z) = Z^{-1}\left[\frac{z^3+z}{(z-1)^3}\right]$ find the value of u_0 , u_1 and u_2 10. Using convolution theorem to evaluate $Z^{-1}\left[\frac{z^2}{(z-3)(z-4)}\right]$

Department of Electrical and Electronics Engineering

EE6301 – DIGITAL LOGIC CIRCUITS [C202]

Important Questions/Assignments/ Self-study Topics/Seminar topics.

IMPORTANT QUESTIONS:

S.No.	4. Important Questions.	COs	POs
<mark>Q.1.1.</mark>	Convert following hexadecimal number to decimal number.(a)F2816 (b) BC216	C202.1	1
Q.1.2.	Convert following decimal number to hexadecimal.(a)1259(b)5768	C202.1	1
	Give the Gray code for the binary number (111)2.		
Q.1.3.	Convert (a)10010011101011012 (b)10010001011.001011102 to hexadecimal	C202.1	1
Q.1.4.	Convert 35768 to hexadecimal	C202.1	1
<mark>Q.1.5.</mark>	What weight does the digit 5 have in each of the following decimal number?(a)1530	C202.1	1
016	(b)1.059(c)3258(d)567. (i)Define noise margin.	C202.1	1,2
Q.1.6.		C202.1	1,2
	(ii)Define Fan-out?		
	(iii)Define power dissipation?		
	(iv)What is propagation delay?(v)Define fan in?		
Q.1.7.		C202.1	1
	Draw the circuit diagram and explain the working of TTL inverter with tristate output	C202.1 C202.1	
Q.1.8.	Draw and explain the circuit diagram of an ECL OR / NOR gate		1
Q.1.9.	Write short notes on TTL, ECL and CMOS digital logic families	C202.1	1
Q.1.10	Explain the working of 3 input totem pole TTL NAND gate	C202.1	1
Q.1.11	Discuss about TTL parameters	C202.1	1
Q.1.12.	When can RTL be used to represent digital systems?	C202.1	1
<mark>Q.1.13.</mark>	Explain the characteristics and implementation of the following digital logic families.	C202.1	1
0.1.1.1	iCMOS, ii. ECL		
Q.1.14.	Draw the internal circuits of TTL inverter and AND gate	C202.1	1
Q.1.15.	Draw the TTL inverter circuit	C202.1	1
<mark>Q.1.16.</mark>	(i) Explain the operation of TTL NAND gate with a neat circuit diagram.	C202.1	1
	ii) Draw the circuit of CMOS NOR gate and explain its operation. Any two advantages of		
0 1 15	CMOS over the other digital logic	G202.1	1
Q.1.17.	Explain the concept and implementation of ECL logic family	C202.1	1
Q.1.18	Explain about error detection and correction codes	C202.1	1
Q.1.19.	List the advantages of ECL as compared to TTL logic family	C202.1	1
Q.1.20.	Explain the classifications of binary codes.	C202.1	1
Q.2.1.	Using K-map simplify the expression Y (A, B, C, D) = $m_1+m_3+m_5+m_7+m_8+m_9+m_1+m_2+m_2+m_2+m_3+m_2+m_3+m_2+m_3+m_2+m_3+m_2+m_3+m_2+m_3+m_3+m_3+m_3+m_3+m_3+m_3+m_3+m_3+m_3$	C202.2	1
	$m_0+m_2+m_{10}+m_{12}+m_{13}$. Indicate the prime implicants, essential and non-essential prime		
	implicants. Realize the logic circuit using AND-OR-INVERT gates and also by using NAN		
	gates.		
Q.2.2.	Design an 8421 to gray code converter	C202.2	1
Q.2.3.	Simplify using five variable mapping F =(8,9,10,11,13,15,16,18,21,24,25,26,27,30,31)	C202.2	1
Q.2.4.	Simplify the following function using K – map and tabular methods. Compare the	C202.2	1
	methods.F (A,B,C,D) = $\Sigma m(4,5,6,7,8) + \Sigma d$ (11,12,13,14,15).Implement the result using		
	NAND gates		
Q.2.5.	i.Design a 4 bit BCD to Excess- 3 code converter.	C202.2	1
	ii.Design a two – bit magnitude Comparator		
Q.2.6.	Reduce the Boolean function using k-map technique and implement using gates f (w, x, y,	C202.2	1
	$z = \Sigma m (0,1,4,8,9,10)$ which has the don't cares condition d (w, x, y, z) = $\Sigma m(2,11)$.		

<mark>Q.2.7.</mark>	i.Using 8 to 1 multiplexer, re-		wing Boolean	n function	1		C202.2	1				
	$T = f(w,x,y,z) = \Sigma (1,1,2,4,5)$,7,8,9,12,13)										
	(ii)Design a logic circuit to si NAND gates.	mulate the fu	nction f (A, E	s, C) = A	(B + C)	by using only						
<mark>Q.2.8.</mark>	(a)Design an 8421 to gray co	de converter	(b)Implemen	t the Roo	lean fun	ction using 8.1	C202.2	1				
Q.2.0.	mux F (A, B, C, D) = A'BD' +			t the boo		cubil using 0.1	C202.2	1				
<mark>Q.2.9.</mark>	Simplify the following Boole			n method	d F (w x	$v_z = \sum m(0, 1)$	C202.2	1				
Q.2.).	2, 8, 10, 11, 14, 15)		y using K-ine	pinctio	ат (w, л	$(0, 1) = \sum_{i=1}^{n} (0, 1)$	C202.2					
Q.2.10.	A combinational circuit is de	fined by the f	ollowing thre	e Boolea	n functio	ns	C202.2	1				
	F1 = x'y'z'+xz F2 = xy'z'+x'	y F3 = x'y'z +	xy. Design th	e circuit	with a de	coder and						
	external gates											
Q.2.11.	Design A Full Adder And A	Full Subtracto	or				C202.2	1				
Q.2.12.	Design a 4-bit binary to exce	ss-3 converter	r using the un	used con	bination	s of the code as	C202.2	1,2				
	don't care conditions. Repres											
Q.2.13.	Implement the following fund					1, 3, 4, 8, 9, 15)	C202.2	1				
Q.2.14.	Simplify the following Boole		-				C202.2	1				
C	$\sum m (1, 3, 4, 6, 9, 11, 12, 14)$		- ,			······································		-				
Q.2.15.	Obtain the minimum SOP us	ing K-map me	ethod				C202.2	1				
	F=m0+m2+m4+m8+m9+m1	0+m11+m12-	+m13									
<mark>Q.2.16.</mark>	Reduce the following using k	K-map method	d F=m2+m3+	m4+m6+	-m7+m9-	+m11+m13	C202.2	1				
Q.3.1.	A sequential circuit has 2D f						C202.3	1				
	following next state and		-		-	-						
	a. $A(t+1) = Ax + B$	X										
	b. B $(t+1) = A'x$											
	c. $Y = (A+B) x'$											
	(i)Draw the logic diagram	of the circuit	t ii. Derive t	he state	table iii.	Derive the state						
	diagram.											
Q.3.2.	Design a mod-10 synchrono	us counter us	sing Jk ff. w	ite excit	ation tab	le and state	C202.3	1				
	table.		0									
<mark>Q.3.3.</mark>	Design a sequential circuit us	ing JK flip-fl	op for the fol	owing st	ate table	[use state	C202.3					
			1	0		C C	C202.5 1					
							C202.5	1				
	diagram]						C202.5	1				
	diagram] Present	N	ext state		Out	put	C202.5	1				
	diagram] Present state	11100					C202.3	1				
	diagram] Present state AB	X=0	X=1		Out X=0	X=1	C202.3	1				
	diagram] Present state AB 00	X=0 00	X=1				C202.3	1				
	diagram] Present state AB	X=0	X=1			X=1	C202.3	1				
	diagram] Present state AB 00 01	X=0 00 01	X=1 11 11			X=1 0 1	C202.3	1				
034	diagram] Present state AB 00 01 10 11	X=0 00 01 01 11	X=1 11 11 00 10		X=0 1 1 0	X=1 0 1 0 0						
Q.3.4.	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a	X=0 00 01 01 11 synchronous	X=1 11 11 00 10		X=0 1 1 0	X=1 0 1 0 0	C202.3	1				
	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000,	X=0 00 01 01 11 synchronous	X=1 11 11 00 10 counter whice	h counts	X=0 1 1 0 in the sec	X=1 0 1 0 0 quence 000,	C202.3	1				
<mark>Q.3.4.</mark> Q.3.5.	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000, Design a synchronous counter	X=0 00 01 01 11 synchronous	X=1 11 11 00 10 counter whice	h counts	X=0 1 1 0 in the sec	X=1 0 1 0 0 quence 000,						
Q.3.5.	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000, Design a synchronous counter 5, 0, 7	X=0 00 01 01 11 synchronous	X=1 11 11 00 10 counter whic	h counts nt the foll	X=0 1 1 0 in the second	X=1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C202.3 C202.3	1				
	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000, Design a synchronous counter 5, 0, 7 Reduce the number of states	X=0 00 01 01 11 synchronous	X=1 11 11 00 10 counter whic	h counts nt the foll	X=0 1 1 0 in the second	X=1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C202.3	1				
Q.3.5.	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000, Design a synchronous counter 5, 0, 7	X=0 00 01 11 synchronous r using JK fli in the followi	X=1 11 11 00 10 counter whic p-flop to counter ng state table	h counts nt the foll	X=0 1 1 1 0 in the second	X=1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C202.3 C202.3	1				
Q.3.5.	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000, Design a synchronous counter 5, 0, 7 Reduce the number of states	X=0 00 01 11 synchronous or using JK fli in the followi Present	X=1 11 11 00 10 counter whic p-flop to coun ng state table Next State	h counts ht the foll and tabu	X=0 1 1 1 0 in the sec lowing sec late the r	X=1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C202.3 C202.3	1				
Q.3.5.	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000, Design a synchronous counter 5, 0, 7 Reduce the number of states	X=0 00 01 11 synchronous r using JK fli in the followi Present state	$\begin{array}{c c} X=1\\ 11\\ 11\\ 00\\ 10\\ \hline \end{array}$ counter whice p-flop to counter whice ng state table Next State x = 0	h counts and tabu x = 1	X=0 1 1 0 in the second seco	x=1 0 1 0 1 0 0 quence 000, equence 7, 4, 3, 1, educed state $x = 1$	C202.3 C202.3	1				
Q.3.5.	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000, Design a synchronous counter 5, 0, 7 Reduce the number of states	X=0 00 01 11 synchronous er using JK fli in the followi Present state a	$\begin{array}{c c} X=1\\ 11\\ 11\\ 00\\ 10\\ \hline \end{array}$ counter whice p-flop to counter whice mg state table Next State x = 0 F	h counts the foll and tabu x = 1 b	X=0 1 1 0 in the set lowing set late the r $Output$ $x = 0$ 0	$ \begin{array}{c} $	C202.3 C202.3	1				
Q.3.5.	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000, Design a synchronous counter 5, 0, 7 Reduce the number of states	X=0 00 01 11 synchronous r using JK fli in the followi Present state a b	$\begin{array}{c c} X=1\\ 11\\ 11\\ 00\\ 10\\ \hline \end{array}$ counter whice p-flop to counter whice p-flop to counter table $\hline Next State\\ x=0\\ \hline F\\ D\\ \hline \end{array}$	h counts and tabu x = 1 b c	X=0 1 1 0 in the set lowing set late the r $Output$ $x=0$ 0 0		C202.3 C202.3	1				
Q.3.5.	diagram] Present state AB 00 01 10 11 Using SR flip-flops, design a 111, 101, 110, 001, 010, 000, Design a synchronous counter 5, 0, 7 Reduce the number of states	X=0 00 01 11 synchronous er using JK fli in the followi Present state a	$\begin{array}{c c} X=1\\ 11\\ 11\\ 00\\ 10\\ \hline \end{array}$ counter whice p-flop to counter whice mg state table Next State x = 0 F	h counts the foll and tabu x = 1 b	X=0 1 1 0 in the set lowing set late the r $Output$ $x = 0$ 0	$ \begin{array}{c} $	C202.3 C202.3	1				

[-	D	_	0			1
		e c	D	C	0	0		
		f	F	b	1	1		
		g	G	h	0	1		
		h	G	а	1	0		
Q.3.7.	A sequential circuit has four f State equations.A $(t + 1) = (C C (t + 1) = B, D (t + 1) = C$ a. Obtain the sequence b. Obtain the sequence	D' + C'D) x e of states w	x + (CD + C) then $x = 1$ s	C'D') x', I starting fro	B(t+1) = Aom ABCD	A, = 0001	C202.3	1
Q.3.8.	Consider the following synch						C202.3	1
Q.3.8.	table. What does the circuit do				nne its stat	e	C202.3	1
Q.3.9.	For the given Moore model of flop input and output equation X	=D-p	^{o2} z	the state ta	able, state c	liagram, flips	C202.3	1
Q.3.10.	A sequential circuit with 2 D the following next state and c (A + B) X' (i)Draw the logic diagram of diagram	output equation	ons. A (t +	(1) = AX	+ BX, B (t	(+1) = A'X, Y =		1
Q.3.11.	Design a synchronous decade	counter usir	ng D flin fl	op.			C202.3	1
Q.3.12.	Design the clocked sequential below		0 1	1	e state diag	gram is given	C202.3	1
<mark>Q.4.1.</mark>	Design an asynchronous sequ	ential circuit	that has ty	wo inputs	X2 and X1	and one output	C202.4	1

Q.5.2.	Write the HDL gate level description of the priority encoder	C202.5	1
Q.5.1.	Write a HDL code for state machine to BCD to ex–3 codes Converter.	C202.5	1
	$Y_0 = ABCD$		
	$Y_1 = A'BC' + A'BC + AB'C + ABC'$		
	$Y_2 = A'BCD' + A'BCD + ABCD + ABCD$		
Q.4.13.	Generate the following Boolean functions with a PAL with 4 inputs and 4 outputs. $Y_3 = A'BC'D + A'BCD' + A'BCD + ABC'D$	C202.4	1
0.4.12	B, C) = \Box m (0, 2, 4, 7). Implement the circuit using PLA.	C202 4	1
Q.4.12.	A combinational circuit is defined by the functions $F_1(A, B, C) = \Box m (3, 5, 6, 7), F_2(A, D, C) = \Box m (3, 5, 7), F_2(A, D, C) = \Box m (3, 5, 7), F_2(A, D, C) = \Box m (3, 5, 7), F_2(A, D, C) = \Box m (3$	C202.4	1
0.4.15			
	$\Sigma m(3,7,8,9,11,15) X(A,B,C,D) = \Sigma m(3,4,5,7,10,14,15) Y (A, B, C, D) = \Sigma m (1, 5, 7, 11, 1)$		
<mark>Q.4.11.</mark>	Illustrate the ROM and PLA design for the following functions W(A,B,C,D) =	C202.4	1
	iii.PAL		
Q.4.10.	Discuss the working of the following programmable logic devices: i. PROM ii. PLA	C202.4	1
ک ک	output binary number equivalent to the square of input number.	0202.4	1
Q.4.9.	Using ROM, design a combinational circuit which accepts 3 bit number and generates an	C202.4	1
	ř tt- U-1		
	V2 De-		
	table of the following asynchronous sequential circuits		
<mark>Q.4.8.</mark>	Analyze the Boolean expression, K- Map, transition and state table and primitive flow	C202.4	1
0.40	BC		
Q.4.7.	Draw a PLA circuit to implement the logic functions A'BC + AB'C + AC' and A'B'C' +	C202.4	1
	$Z4 = a'c'e + ce \qquad using a 5 x 8 x 4 PLA.$		
• • • •	Z1 = ab'd'e + a'b'c'd'e' + bc + de, Z2 = a'c'e, Z3 = bc + de + c'd'e' + bd		
Q.4.6.	Draw a neat sketch showing the implementation of	C202.4	1
	change		
	when $x_2 = 1$ and x_1 changes from 0 to 1 the output $z_1 z_2 = 01$, when $x_2 = 1$ and x_1 changes from 0 to 1 the output $z_1 z_2 = 10$ otherwise output does not		
	100 output z1 z2 = 00, when x1= 1 and x2 changes from 0 to 1 the output z1 z2 = 01,		
X . 1.5.	and x2 and two outputs z1 and z2 that satisfies the following conditions. When $x_1 x_2 =$	0202.1	1
Q.4.5.	Draw the state diagram and obtain the primitive flow table for a circuit with two inputs x1	C202.4	1
Q.4.4.	critical race	C202.4	1
0 4 4	(iii)Obtain a two-state flow table.Define the following: i) asynchronous sequential circuits, ii) Cycles, iii) critical and non-	C202.4	1
	(i)Draw the logic diagram of the circuit (ii) Derive the transition table and output map		
	$Y = x_1x_2' + (x_1+x_2') y \& Z = y$		
<mark>Q.4.3.</mark>	An asynchronous sequential circuit is described by the excitation and output functions	C202.4	1
	(iii)Obtain a flow table for the circuit.		
	(i)Draw the logic diagram of the circuit. (ii) Derive the transition table and output map.		
	$Y_{1}=x_{1}+x_{1}y_{2}+x_{2}y_{1}$ $Y_{2}=x_{2}+x_{1}y_{1}$ $y_{2}+x_{1}y_{1}$ $Z=x_{2}+y_{1}$		
<u>X</u>	and output functions describing the circuit	0202.1	-
Q.4.2.	An asynchronous sequential circuit has two internal states and one output. The excitation	C202.4	1
	a state diagram and flow table. Determine the output equations		
	while X ₁ is a 1 will cause a Z to be a 1. Z is to remain a 1 until X ₁ returns to 0. Construct	ł	

T.1.2	What weight does the digit 5 have in each of the following decimal number?(a)1530 (b)1.059(c)3258(d)567.	C202.1	1,2
T.1.3	(i)Convert (a) 10010011101011012 (b) 10010001011.001011102 to hexadecimal. (ii)Convert 35768 to hexadecimal	C202.1	1,2
T.1.4	Given that a frame with bit sequence 1101011011 is transmitted, it has been received as 1101011010. Determine the method of detecting the error using any one detecting code.	C202.1	1,2
T.1.5	(i)Draw the MOS logic circuit for NOT gate and explain its operation(ii) Design a TTL logic circuit for a 3-input NAND gate	C202.1	1,2
T.2.1	(i)Prove that $ABC + ABC' + AB'C + A'BC = AB + AC + BC$ (ii)Simplify the following expression $Y = (A + B) (A + C') (B' + C')$	C202.2	1,2
T.2.2	Find the complement of the functions $F1 = x'yz' + x'y'z$ and $F2 = x (y'z' + yz)$. By applying De-Morgan's theorem.	C202.2	1,2
T.2.3	Given $F = B' + A'B + A'C'$. Identify the redundant term using K-Map.	C202.2	1,2
T.2.4	Simplify the following Boolean functions by using K'Map in SOP & POS. F (w, x, y, z) = $\sum m (1, 3, 4, 6, 9, 11, 12, 14)$	C202.2	1,2
T.2.5	Reduce the Boolean function using k-map technique and implement using gates f (w, x, y, z)= Σm (0,1,4,8,9,10) which has the don't cares condition d (w, x, y, z)= Σm (2,11).	C202.2	1,2
T.2.6	Design an 8421 to gray code converter.	C202.2	1,2
T.2.7	Implement the Boolean function using 8:1 mux F (A, B, C, D) =A'BD'+ACD+B'CD+A'C'D.	C202.2	1,2
T.3.1	 A sequential circuit has 2D ff's A and B an input x and output y is specified by the following next state and output equations. A (t+1)= Ax + Bx ,B (t+1)= A'x ,Y= (A+B) x' (i)Draw the logic diagram of the circuit.(ii)Derive the state table.(iii)Derive the state diagram. 	C202.3	1,2
T.3.2	Design a mod-6 synchronous counter using Jk ff. write excitation table and state table.	C202.3	1,2
T.3.3	(a) Write the excitation tables of SR, JK, D, and T Flip flops(b) Realize D and T flip flops using Jk flip flops	C202.3	1,2
T.3.4	Design a sequential detector which produces an output 1 every time the input sequence 1011isdetected.	C202.3	1,2
T.3.5	Design a counter with the following repeated binary sequence:0, 1, 2, 3, 4, 5, 6.use JK Flip flop.	C202.3	1,2
T.3.6	Using positive edge triggering SR flip-flops design a counter which counts in the following sequence: 000,111,110,101,100,011,010,001,000,	C202.3	1,2
T.4.1	7. Implement the following function using PLA. a. A (x,y, z) = $\sum m (1, 2, 4, 6)$ b. B (x, y, z) = $\sum m (0, 1, 6, 7)$ c. C (x, y, z) = $\sum m (2, 6)$	C202.4	1,2
T.4.2	8. Implement the following function using PAL. a. W (A, B, C, D) = $\sum m (2, 12, 13)$ b. X (A, B, C, D) = $\sum m (7, 8, 9, 10, 11, 12, 13, 14, 15)$ c. Y (A, B, C, D) = $\sum m (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$ d. Z (A, B, C, D) = $\sum m (1, 2, 8, 12, 13)$	C202.4	1,2
T.4.3	 (i) A combinational circuit is defined by the functions. a. F1 (a, b, c) = ∑ m (3, 5, 6, 7) b. F2 (a, b, c) = ∑ m (0, 2, 4, 7)Implement the circuit with a PLA. 	C202.4	1,2
T.4.4	Analyze the Boolean expression, K- Map, transition and state table and primitive flow table of the following asynchronous sequential circuits	C202.4	1,2

T.4.5	An asynchronous sequential circuit has two internal states and one output. The excitation	C202.4	1,2
	and output functions describing the circuit		
	$Y_{1}=x_{1}+x_{1}y_{2}+x_{2}y_{1}$ $Y_{2}=x_{2}+x_{1}y_{1}+y_{2}+x_{1}y_{1}$ $Z=x_{2}+y_{1}$		
	Draw the logic diagram of the circuit.(6)		
	Derive the transition table and output map.(5)		
	Obtain a flow table for the circuit.(5)		
T.4.6	An asynchronous sequential circuit is described by the excitation and output functions	C202.4	1,2
	$Y = x_1x_2' + (x_1+x_2') y \& Z = y$		
	Draw the logic diagram of the circuit .		
	Derive the transition table and output map		
	Obtain a two-state flow table.		
T.5.1	Write a HDL program module for full adder circuit.	C202.5	1,2
T.5.2	Write a HDL code for 8:1 MUX using behavioral model	C202.5	1,2
T.5.3	Write an HDL behavioral description of ripple counter	C202.5	1,2
T.5.4	Write a HDL program for four bit ripple carry adder.	C202.5	1,2
	5. Assignments / <u>Seminar</u> / Self-study topics.		
Sem.1.	Pulse and Digital Circuits	C202.	
Sem.2.	FPAA for Analog Circuit Design	C202.	
Sem.3.	Digital Circuits Logic Design	C202.	
Sem.4.	Digital Logic for Medicine	C202.	
Sem.5.	Digital Logic for Biology Research	C202.	
Sem.6.	Memristor	C202.	
Sem.7.	Embryonics Approach Towards Integrated Circuits	C202.	
Sem.8.	An Introduction to Low Power Design in VLSI	C202.	
Sem.9.	Complex Programmable Logic Device	C202.	
Sel.1.	VHDL Modelling of Glue Logic of 1553b Interface Board	C202.	
Sel.2.	FPGA for Digital Circuits	C202.	

Department of Electrical and Electronics Engineering

EE6302- ELECTROMAGNETIC THEORY [C203]

Important Questions /Tutorials /Assignments /Self-study /Seminar topics.

S.No.	1. Questions.	COs	POs
Q.1.1	Given that $\overline{\mathbf{D}} = \frac{10}{3} \mathbf{x}^3 \overline{\mathbf{a}}_x c/m^2$, evaluate both sides of the divergence theorem for the volume	C203.1	1,2
	of a cube, 2 m on the edge, centered at the origin and with edges parallel to the axis?		
Q.1.2	A vector field $\overline{\mathbf{D}} = \frac{5}{4}\mathbf{r}^2\overline{\mathbf{a}}_r$ is given in spherical co-ordinates. Evaluate both sides of	C203.1	1,2
-	divergence theorem for the volume enclosed by r=4 m & $\theta = \pi/4$.		
Q.1.3		C203.1	1,2
Q.1.5	A vector field $\overline{\mathbf{D}} = \frac{5}{4}\mathbf{r}^2\overline{\mathbf{a}}_r$ is given in spherical co-ordinates. Evaluate both sides of	0205.1	1,2
0.1.4	divergence theorem for the volume enclosed between $r = 1m$ & $r = 2m$.	C202.1	1.0
Q.1.4	Given $\overline{\mathbf{A}} = 2\mathbf{r}\cos\boldsymbol{\varphi}\overline{\mathbf{a}}_{r} + \mathbf{r}\overline{\mathbf{a}}_{\varphi}$ in cylindrical co-ordinates. for the contour x=0 to 1, y=0	C203.1	1,2
Q.1.5	to1, verify stoke's theorem Verify the divergence theorem for the following case $\overline{\mathbf{A}} = \mathbf{x}\mathbf{y}^2\overline{\mathbf{a}}_x + \mathbf{y}^3\overline{\mathbf{a}}_y + \mathbf{y}^2\mathbf{z}\overline{\mathbf{a}}_z$ and the	C203.1	1,2
Q.1.3	surface is a cuboids defined by $0 < x < 1$, $0 < y < 1$ and $0 < z < 1$	C205.1	1,2
Q.1.6	Surface is a cubolds defined by $0 < x < 1$, $0 < y < 1$ and $0 < z < 1$ Check validity of the divergence theorem considering the field $\overline{\mathbf{D}} = 2\mathbf{x}\mathbf{y}\overline{\mathbf{a}}_{\mathbf{x}} + \mathbf{x}^2\overline{\mathbf{a}}_{\mathbf{y}}\mathbf{c/m}^2$	C203.1	1,2
Q .110	and the rectangular parallelepiped formed by the planes $x = 0$, $x = 1$, $y = 0$, $y = 2$ & $z = 0$,	020001	-,-
	z = 3.		
Q.1.7	Determine the divergence and curl of these vectors fields	C203.1	1,2
	$\overline{P} = x^2 y z \overline{a}_x + x z \overline{a}_z$		
	$\overline{\mathbf{Q}} = \rho \sin \varphi \overline{\mathbf{a}}_{\rho} + \rho^2 z \overline{\mathbf{a}}_{\varphi} + z \cos \varphi \overline{\mathbf{a}}_{z},$		
	$\overline{T} = \frac{1}{r^2} \cos \theta \overline{a}_r + r \sin \theta \cos \varphi \overline{a}_\theta + \cos \varphi \overline{a}_\varphi$		
Q.1.8	If a Scalar potential is given by the expression $\varphi = xyz$, determine the potential gradient and	C203.1	1,2
-	also prove that the vector $\mathbf{\bar{F}} = \mathbf{grad} \boldsymbol{\varphi}$ is irrotational. Find the gradient of the following		
	scalar fields:		
	(i) $V = e^{-z} \sin 2x \cosh y$ (ii) $U = \rho^2 z \cos 2\varphi$ (iii) $W = 10 r \sin^2 \theta \cos \varphi$		
Q.1.9	Using gauss's law, calculate the E due to infinitely large uniformly charged plate? And two	C203.1	1,2
	such plates- are placed parallel to each other. Compute E between and outside the plates		
Q.1.10	when both the plates are -charged with the same charge density? A Line charge of 20nC/m is located at $x = 2m$ and $y = -4m$. Calculate the field E at (-2, -1,	C203.1	1,2
Q.1.10	A Line charge of 20hC/m is located at $x = 2m$ and $y = -4m$. Calculate the field E at (-2, -1, 4) m.	C205.1	1,2
Q.1.11	A circular disc of radius 'a' m is charged uniformly with a charge density of σ c/m ² . find	C203.1	1,2
Z	the electric field at a point 'h' m from the disc along its axis	020011	-,-
Q.1.12	Derive an expression for electric field intensity E due to a uniformly charged long Straight	C203.1	1,2
	line with constant charge density in C/m?		
Q.1.13	Three surface charge distributions are located in free space as follows: 10 μ C/m ² at x = 2, -	C203.1	1,2
0 1 1 4	20 μC/m² at y= - 3 and 30 μC/m² at z = 5. Determine E at P (5,-1, 4)?	G202.1	1.0
Q.1.14	Derive Electric field intensity and electric flux density for infinite line charge and infinite	C203.1	1,2
Q.1.15	sheet of charge using gauss's law? Given $\mathbf{E} = y \mathbf{a}_x - x \mathbf{a}_y + 2 \mathbf{a}_z$, determine work expended in carrying 2C from B (1, 0, 1) to	C203.1	1,2
Q.1.15	A(0.8, 0.6, 1) along shorter arc of circle and determine work expended in carrying 2C from B to $A(0.8, 0.6, 1)$ along shorter arc of circle and determine work required to carry 2C from B to	C205.1	1,2
	A along straight line path from B to A?		
Q.2.1	Determine the capacitance of capacitor consisting of two parallel metal plates 30cm x 30cm,	C203.2	1,2
-	surface area, separated by 5 mm in air. What is the total energy stored by the capacitor if the		
	capacitor is charged to P.D. of 500 V? What is the energy density?		
Q.2.2	A parallel plate capacitor with a separation of 1 cm has 29 kV applied, when air was the	C203.2	1,2
	dielectric used. Assume that the dielectric strength of air as 30 kV/cm. A thin piece of glass with a $(55 \text{ with a dialactric strength of } 200 \text{ kV/cm}$ with this large 0.2 cm is inserted. Find		
	with $\varepsilon_r = 6.5$ with a dielectric strength of 290 kV/cm with thickness 0.2 cm is inserted. Find whether glass or air will break?		
Q.2.3	whether glass or air will break? Find the total current in a circular conductor of radius 4 mm, if the current density varies	C203.2	1,2
X .2.3	•	C203.2	1,4
	according to $J = \frac{10^4}{r} (A/m^2)$		
Q.3.1	Plane y =0 carries a uniform current of 30 $\bar{a}_z mA/m$. Calculate the magnetic field intensity	C203.3	1,2

	at (1, 10, -2) m in rectangular co –ordinate system.		
Q.3.2	Find the force for a wire is perpendicular to the page with current flowing inward has	C203.3	1,2
Q.3.2	producing a Magnetic field B.	C205.5	1,2
Q.3.3	Find the magnetic flux density at a point on the axis of a loop of radius 'b' that carries a	C203.3	1,2
	direct current I.		,
Q.3.4	A thin cylindrical conductor of radius 'a' infinite in length carries a current I. Find H at all	C203.3	1,2
	points?		
Q.3.5	Find \overline{H} at the centre of an equilateral triangle loop of side 4 m carrying current of 5A?	C203.3	1,2
Q.3.6	An iron ring with a cross sectional area of 3 cm^2 and a mean circumference of 15 cm is	C203.3	1,2
	wound with 250 turns wire carrying a current of 0.3 A. The relative permeability of the ring		
	is 1500. Calculate the flux established in the ring.		
Q.3.7	Determine the force between two long parallel wires of 200 m length separated by 5 cm in	C203.3	1,2
0.2.9	air and carrying currents of 40 A in same direction and in opposite direction.	C202.2	1.0
Q.3.8	Two coils when connected in series aiding have a total inductance of 860 mH and when connected in series opposing the total inductance is 140 mH. One coil has 4 times the	C203.3	1,2
	connected in series opposing the total inductance is 140 mH. One coil has 4 times the inductance of the other. Calculate the inductance of each coil, the mutual inductance and co-		
	efficient of coupling.		
Q.3.9	A magnetic material has $\mu_r = 10/\pi$ and is in a magnetic field of strength $\overline{H} = 5\rho^3 \overline{a}_{\varphi} A/$	C203.3	1,2
2.0.12	<i>m</i> . Find the magnetization	020010	-,-
Q.3.10	A solenoid has 400 turns with a length of 2 m. It has a circular cross section of 0.1 m^2 . Find	C203.3	1,2
Q	its inductance.	0200.0	1,2
Q.3.11	Consider a co-axial cable with inner conductor radius 'a' carrying current I, while – I is	C203.3	1,2
	uniformly distributed in the outer conductor. The outer conductor is in the form of		-
	concentric cylinder whose inner radius is 'b' and outer radius is 'c'. Obtain the expression		
	for magnetic field intensity \overline{H} for the following regions, applying Amperes law (a) region r		
	< a (b) region between 'a' and 'b' (i.e. a $<$ r $<$ b) (c) region between b and c and		
	(d) region $r > c$.		
Q.4.1	Explain the different methods of emf induction with necessary governing equation with	C203.4	1,2
Q.4.2	suitable examples? Derive from first principles, Maxwell's equation for electric and magnetic field in both	C203.4	1,2
Q.4.2	differential and integral form?	C205.4	1,2
Q.4.3	Derive the relationship between circuit theory and field theory using RLC circuit?	C203.4	1,2
Q.5.1	Determine the skin depth of copper at 60Hz with $\sigma = 5.8 \times 10^7$ S/m. Given $\mu_r = 1$;	C203.5	1,2
Q.5.2	A plane wave propagating through a medium with $\mu_r = 2$, $\varepsilon_r = 8$ has $E = 0.5 \sin (10^8 \text{ t- }\beta z) \bar{a}_x$	C203.5	1,2
	V/m. Determine the propagation parameters and H fields?		,
Q.5.3	In free space E (z,t) = 50 cos (ω t - β z) ax V/m. Find the average power crossing a circular	C203.5	1,2
	area of radius 2.5 m in the constant Z- Plane.		
Q.5.4	Find the velocity of a plane wave in a loss-less medium having a relative permittivity of 5	C203.5	1,2
	and relative permeability of unity?	G202 7	1.0
Q.5.5	Derive the electromagnetic wave equation from the Maxwell's equation and their solution?	C203.5	1,2
Q.5.6	Give a mathematical representation of plane waves propagating in $+Z$ direction in an infinite	C203.5	1,2
	loss less dielectric medium. Explain how this medium is characterized by propagation constant and wave impedance?		
Q.5.7	Obtain the expression for Poynting vector from the Maxwell's equation for the general case?	C203.5	1,2
Q.J.1	obtain the expression for roynting vector from the Maxwen's equation for the general case.	0205.5	1,2
	2. Assignments		
A1.1	Prove that curl grad $\varphi = 0$;	C203.1	1,2
A1.2	Given the point A (-2, 6, 3), find the spherical coordinate of point A?	C203.1	1,2
A1.3	Given that $\overline{\mathbf{D}} = \frac{10}{3} \mathbf{x}^3 \overline{\mathbf{a}}_x c/m^2$, evaluate both sides of the divergence theorem for the volume	C203.1	1,2
	of a cube, 2 m on the edge, centered at the origin and with edges parallel to the axis?		
A1.4		C203.1	1,2
• •	A vector field $\overline{\mathbf{D}} = \frac{5}{4} \mathbf{r}^2 \overline{\mathbf{a}}_r$ is given in spherical co-ordinates. Evaluate both sides of		-,-
A 1 5	divergence theorem for the volume enclosed between $r = 1m$ & $r = 2m$.	C202.1	1 0
A1.5	A Magnetic field $\overline{\mathbf{H}} = 3 \cos x \overline{\mathbf{a}}_x + z \cos x \overline{\mathbf{a}}_{y, A/m}$, for $z \ge 0$	C203.1	1,2
	$= 0 \text{ for } \mathbf{z} < 0$		
	is applied to a perfectly conducting surface in x y plane. Find the current density on the		
	Conductor surface.		

A1.6	If $\overline{\mathbf{G}(\mathbf{r})} = 10\mathbf{e}^{-2\mathbf{z}}(\boldsymbol{\rho}\overline{\mathbf{a}}_{\boldsymbol{\rho}} + \overline{\mathbf{a}}_{\mathbf{z}})$, determine the flux of G out of the surface of the cylinder $\boldsymbol{\rho}=1, 0 \leq z \leq 1$.	C203.1	1,2
A1.7	Check validity of the divergence theorem considering the field $\overline{\mathbf{D}} = 2\mathbf{x}\mathbf{y}\overline{\mathbf{a}}_{\mathbf{x}} + \mathbf{x}^2\overline{\mathbf{a}}_{\mathbf{y}}$ c/m ² and the rectangular parallelepiped formed by the planes $\mathbf{x} = 0$, $\mathbf{x} = 1$, $\mathbf{y} = 0$, $\mathbf{y} = 2$ & $\mathbf{z} = 0$, $\mathbf{z} = 3$.	C203.1	1,2
A1.8	If a Scalar potential is given by the expression $\phi = xyz$, determine the potential gradient and also prove that the vector $\mathbf{\bar{F}} = \mathbf{grad} \phi$ is irrotational.	C203.1	1,2
A1.9	Find the electric potential at a point $(4, 3)$ m due to charge of 10^{-9} C located at the origin in free space.	C203.1	1,2
A1.10	Using gauss's law, calculate the \mathbf{E} due to infinitely large uniformly charged plate? And two such plates- are placed parallel to each other. Compute \mathbf{E} between and outside the plates when both the plates are -charged with the same charge density?	C203.1	1,2
A1.11	Derive the expressions for potential due to a point charge and a ring charge?	C203.1	1,2
A1.12	Derive the electric field and potential distribution and the capacitance per unit length of a coaxial cable	C203.1	1,2
B1.1	A Line charge of 20nC/m is located at $x = 2m$ and $y = -4m$. Calculate the field E at (-2, -1, 4) m.	C203.1	1,2
B1.2	Derive an expression for electric field intensity \mathbf{E} due to a uniformly charged long Straight line with constant charge density in C/m?	C203.1	1,2
B1.3	Derive Electric field intensity and electric flux density for infinite line charge and infinite sheet of charge using gauss's law?	C203.1	1,2
B1.4	Derive the electrostatic boundary conditions at the interface of two dielectric media. If one of the medium is conductor, discuss the field pattern	C203.2	1,2
B1.5	Conducting spherical shells with radii $a = 10$ cm, $b = 30$ cm are maintained at a potential difference of 100V such that at V =0 at r= b and V = 100 V at r=a. Determine V and E region between the shells. If $\varepsilon_r = 2.5$ in the region, determine the total charge induced in the shells and the capacitance of the capacitor.	C203.2	1,2
B1.6	Calculate the total charge enclosed by a cube of 2m sides, centered at the origin and with the edges parallel to the axis when the electric flux density over the cube is $\mathbf{D}=10x^{3}/3 \mathbf{a}_{x}$ (c/m ²)?	C203.2	1,2
B1.7	Given $\overline{J} = 10^4 \sin \theta \overline{a_r} A/m^2$ in spherical system. Find the current passing through spherical shell of $r = 0.02$ m.	C203.2	1,2
B1.8	Calculate inductance of ring shaped coil having a mean diameter of 20 cm wound on a wooden core of 2 cm diameter. The winding is uniformly distributed and contains 200 turns?	C203.3	1,2
B1.9	A conductor located at x = 0.5 m, y =0 and 0 < z < 2.0 m carries a current of 10 A in the \overline{a}_z direction. Along the length of the conductor $\overline{B} = 2.5 \ \overline{a}_z T$. find the torque about the x axis.	C203.3	1,2
B1.10	A solenoid 4 cm in length carries a current of 100 mA. If solenoid is to produce magnetic flux density of 5mWb/m^2 , how many turn of wire are needed.	C203.3	1,2
B1.11	A long straight wire carries a current $I = 1$ A. At what distance is the magnetic field H= 1 A/m.	C203.3	1,2
B1.12	Derive the Magnetostatic boundary conditions at the interface two different magnetic media?	C203.3	1,2
C1.1	Explain magnetization in magnetic materials and explain how the effect of magnetization is taken into account in the calculation of B/H?	C203.3	1,2
C1.2	Find the torque about the y axis for the two conductors of length l, carrying current in opposite directions, separated by fixed distance w, in the uniform magnetic field in x directions?	C203.3	1,2
C1.3	Derive an expression for magnetic scalar and vector potential.	C203.3	1,2
C1.4	Obtain the expression for Magnetic field strength at an 'r' m from conductor of finite length?	C203.3	1,2
C1.5	A circular loop located on $x^2+y^2=9$, z=0 carries a direct current of 10 A along \bar{a}_{φ} direction in cylindrical coordinate system. Derive the expression for magnetic field intensity $d\bar{H}$ at point $P(0,0,h)$ contributed by current element I $d\bar{l}$ using Biot-savart's law. Determine \bar{H} at (0, 0, 4).	C203.3	1,2
C1.6	Calculate the inductance of 10 m length of a coaxial cable filled with a material for which ε_{R}	C203.3	1,2

C1.7	Derive from first principles, Maxwell's equation for electric and magnetic field in both differential and integral form?	C203.4	1,2
C1.8	Derive the relationship between circuit theory and field theory using RLC circuit?	C203.4	1,2
C1.9	Explain the different methods of emf induction with necessary governing equation with suitable examples?	C203.4	1,2
C1.10	Derive the electromagnetic wave equation from the Maxwell's equation and their solution?	C203.5	1,2
C1.11	Give a mathematical representation of plane waves propagating in $+Z$ direction in an infinite loss less dielectric medium. Explain how this medium is characterized by propagation constant and wave impedance?	C203.5	1,2
C1.12	Obtain the expression for Poynting vector from the Maxwell's equation for the general case?	C203.5	1,2
	3. Tutorials		
Г.1.1	Transform a vector $\overline{\mathbf{A}} = \mathbf{Y}\overline{\mathbf{a}}_{x} - \mathbf{X}\overline{\mathbf{a}}_{y} + \mathbf{Z}\overline{\mathbf{a}}_{z}$ in to cylindrical co-ordinates.	C203.1	1,2
Г.1.2	Given that $P(-3,2,1)$ and vector $\overline{\mathbf{A}} = \mathbf{y} \overline{\mathbf{a}}_x + (\mathbf{x} + \mathbf{z}) \overline{\mathbf{a}}_y$, express P and A in cylindrical Coordinate system	C203.1	1,2
Г.1.3	Find the gradient of a scalar function of position f, where $F(x,y,z) = x^2y + e^z$ at point P (1,5,-2).	C203.1	1,2
T.1.4	A vector field $\overline{\mathbf{D}} = \frac{5}{4}\mathbf{r}^2\overline{\mathbf{a}}_r$ is given in spherical co-ordinates. Evaluate both sides of divergence theorem for the volume enclosed by r=4 m & $\theta = \pi/4$.	C203.1	1,2
Г.1.5	Given $\overline{\mathbf{A}} = 2\mathbf{r} \cos \boldsymbol{\varphi} \overline{\mathbf{a}}_r + \mathbf{r} \overline{\mathbf{a}}_{\varphi}$ in cylindrical co-ordinates. for the contour x=0 to 1,y=0 to 1, verify stoke's theorem	C203.1	1,2
Г.1.6	Verify the divergence theorem for the following case $\overline{\mathbf{A}} = \mathbf{x}\mathbf{y}^2\overline{\mathbf{a}}_x + \mathbf{y}^3 \overline{\mathbf{a}}_y + \mathbf{y}^2\mathbf{z} \overline{\mathbf{a}}_z$ and the surface is a cuboids defined by $0 < x < 1$, $0 < y < 1$ and $0 < z < 1$	C203.1	1,2
Г.1.7	Determine the divergence and curl of these vectors fields $\begin{aligned} (i) \ \overline{P} &= x^2 y z \ \overline{a}_x + x z \ \overline{a}_z \\ (ii) \ \overline{Q} &= \rho \sin \varphi \ \overline{a}_\rho + \rho^2 z \ \overline{a}_\varphi + z \cos \varphi \ \overline{a}_z, \\ \overline{(uu)T} &= \frac{1}{r^2} \cos \theta \ \overline{a}_r + r \sin \theta \cos \varphi \ \overline{a}_\theta + \cos \varphi \ \overline{a}_\varphi \end{aligned}$	C203.1	1,2
Г.1.8	Find the gradient of the following scalar fields: (i) $V = e^{-z} \sin 2x \cosh y$ (ii) $U = \rho^2 z \cos 2\varphi$ (iii) $W = 10 r \sin^2 \theta \cos \varphi$	C203.1	1,2
Г.1.9	The electric potential near the origin of a system of coordinates is $V=ax^2+by^2+cz^2$. Find the electric field at (1, 2, 3)	C203.1	1,2
Г.1.10	Given $\mathbf{E} = y \mathbf{a}_x - x \mathbf{a}_y + 2 \mathbf{a}_z$, determine work expended in carrying 2C from B (1, 0, 1) to A(0.8, 0.6, 1) along shorter arc of circle and determine work required to carry 2C from B to A along straight line path from B to A?	C203.1	1,2
Г.2.1	A circular disc of radius 'a' m is charged uniformly with a charge density of σ c/m ² . find the electric field at a point 'h' m from the disc along its axis	C203.1	1,2
Г.2.2	Three surface charge distributions are located in free space as follows: 10 μ C/m ² at x = 2, - 20 μ C/m ² at y= - 3 and 30 μ C/m ² at z = 5. Determine E at P (5,-1, 4)?	C203.1	1,2
Г.2.3	A total charge of 10^{-8} C is distributed uniformly along a ring of radius of 5m. Calculate the Potential on the axis of the ring at apoint 5m from the centre of the ring?	C203.1	1,2
Г.2.4	Determine the capacitance of capacitor consisting of two parallel metal plates 30cm x 30cm, surface area, separated by 5 mm in air. What is the total energy stored by the capacitor if the capacitor is charged to P.D. of 500 V? What is the energy density?	C203.2	1,2
Г.2.5	A parallel plate capacitor with a separation of 1 cm has 29 kV applied, when air was the dielectric used. Assume that the dielectric strength of air as 30 kV/cm. A thin piece of glass with $\varepsilon_r = 6.5$ with a dielectric strength of 290 kV/cm with thickness 0.2 cm is inserted. Find whether glass or air will break?	C203.2	1,2
Г.З.1	Plane y =0 carries a uniform current of 30 $\overline{a}_z mA/m$. Calculate the magnetic field intensity at (1, 10, -2) m in rectangular co –ordinate system.	C203.3	1,2
	Find the force for a wire is perpendicular to the page with current flowing inward has	C203.3	1,2
Г.3.2	producing a Magnetic Field B .		
Г.3.2 Г.3.3	producing a Magnetic Field B . Find the magnetic flux density at a point on the axis of a loop of radius 'b' that carries a direct current I.	C203.3	1,2

T 2 5		C202.2	1.0
T.3.5	An iron ring with a cross sectional area of 3 cm ² and a mean circumference of 15 cm is	C203.3	1,2
	wound with 250 turns wire carrying a current of 0.3 A. The relative permeability of the ring		
T 2 <i>C</i>	is 1500. Calculate the flux established in the ring.	G202.2	1.0
T.3.6	Determine the force between two long parallel wires of 200 m length separated by 5 cm in	C203.3	1,2
T 2 7	air and carrying currents of 40 A in same direction and in opposite direction.	G202.2	1.0
T.3.7	Two coils when connected in series aiding have a total inductance of 860 mH and when	C203.3	1,2
	connected in series opposing the total inductance is 140 mH. One coil has 4 times the		
	inductance of the other. Calculate the inductance of each coil, the mutual inductance and co-		
T 2 0	efficient of coupling.	C202.2	1.0
T.3.8	A magnetic material has $\mu_r = 10/\pi$ and is in a magnetic field of strength $\overline{H} = 5\rho^3 \overline{a}_{\varphi} A/$	C203.3	1,2
	<i>m</i> . Find the magnetization		
T.3.9	A solenoid has 400 turns with a length of 2 m. It has a circular cross section of 0.1 m^2 . Find	C203.3	1,2
	its inductance.		
T.3.10	Consider a co-axial cable with inner conductor radius 'a' carrying current I, while - I is	C203.3	1,2
	uniformly distributed in the outer conductor. The outer conductor is in the form of		
	concentric cylinder whose inner radius is 'b' and outer radius is 'c'. Obtain the expression		
	for magnetic field intensity \overline{H} for the following regions, applying Amperes law (a) region r		
	< a (b) region between 'a' and 'b' (i.e. a $<$ r $<$ b) (c) region between b and c and (d) region r		
— 4 4	> c.	G000 (1.0
T.4.1	Calculate the induced emf at $t = 10$ sec when the flux through each turn of 200 turn coil is t	C203.4	1,2
T 4 2	(t -1) mWb?	G202 4	1.0
T.4.2	A parallel-plate capacitor with plate area of 5 cm ^{2} and plate separation of 3 mm has a	C203.4	1,2
	voltage 50 sin 10^3 t V applied to its plates. Calculate the displacement current assuming ε		
	$=2 \varepsilon_0.$	~~~	
T.4.3	If the electric field strength of a radio broadcast signal at a TV receiver is given by	C203.4	1,2
	$\mathbf{E} = 5.0 \cos (\omega t - \beta y) \mathbf{a}_z$, V/m, determine the displacement current density. If the same field		
m f 1	exists in a medium whose conductivity	G202.5	1.0
T.5.1	Find the velocity of a plane wave in a loss-less medium having a relative permittivity of 5	C203.5	1,2
	and relative permeability of unity and determine the skin depth of copper at 60Hz with $\sigma = 5.0 \times 10^{7} \text{ G/}$		
TT 5 0	5.8 X 10 ⁷ S/m. Given $\mu_r = 1$;	C202 5	1.0
T.5.2	A plane wave propagating through a medium with $\mu_r = 2, \varepsilon_r = 8$ has $E = 0.5 \sin (10^8 \text{ t- }\beta z) \bar{a}_x$	C203.5	1,2
πε 2	V/m. Determine the propagation parameters and H fields?	C202 5	1.0
T.5.3	In free space E (z,t) = 50 cos (ω t - β z) ax V/m. Find the average power crossing a circular	C203.5	1,2
	area of radius 2.5 m in the constant Z- Plane.		
C 1 1	4. Seminar/Self study topics.	C202.2	1
S.1.1	Application of Electrostatic field	C203.2 C203.3	1
S.1.2	Application of Magnetostatic field	C203.3	1

Department of Electrical and Electronics Engineering

GE6351 – ENVIRONMENTAL SCIENCE AND ENGINEERING [C204]

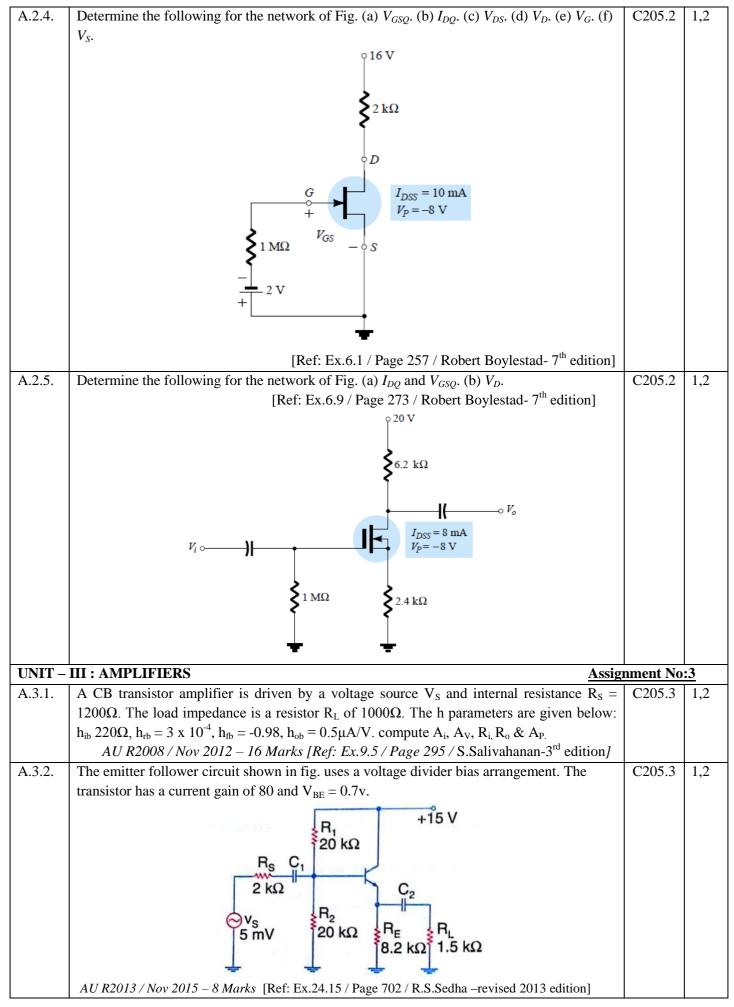
Important Questions/Tutorials/Assignments/Self study /Seminar topics.

S.No.	Important Questions.	COs	POs
Q.1.1.	Explain the various threats to biodiversity. What are the causes for loss of biodiversity?	C204.1	6
Q.1.2.	What is meant by value of biodiversity? Explain different values of biodiversity. Explain in-situ and ex-situ conservation of biodiversity.	C204.1	6
Q.1.3.	Briefly explain the structural and functional components of an ecosystem and energy flow through ecosystem.	C204.1	6
Q.1.4.	What are the cycles in ecosystems? Describe carbon cycle and biogeochemical cycle in the ecosystem.	C204.1	6
Q.1.5.	Discuss the characteristic features, structure and function of a) desert ecosystem b) forest ecosystem and c) aquatic ecosystem.	C204.1	6
Q.2.1.	Explain the methods of disposal of municipal solid waste and radioactive wastes.	C204.1	7
Q2.2.	Explain the causes, effects and control measures of a) marine pollution b) water pollution c) nuclear and radiation pollution.	C204.2	7
Q.2.3.	Describe the sources, effects, and control of noise pollution and soil pollutions (with impacts)	C204.2	7
Q2.4.	Discuss in detail about a) waste water treatment process b) acid rain formation and its effects	C204.2	7
Q.2.5.	Discuss in detail about the Bhopal gas tragedy and Chernobyl nuclear disaster.	C204.2	6,7
Q.3.1.	Discuss briefly the ill-effects of deforestation and effects of modern Agriculture.	C204.3	6
Q.3.2.	What are the causes of soil erosion and deforestation? Explain in detail.	C204.3	7
Q.3.3.	Explain the role of individual in environment protection and ecological benefits of forest.	C204.3	7
Q.3.4.	Explain a) benefits and problems of constructing dam b) effects of dams on forest and tribal people.	C204.3	7
Q.4.1.	Explain watershed management and agenda for sustainable development.	C204.4	6
Q.4.2.	Explain the rain water harvesting and need and strategy of water conservation.	C204.4	7
Q.4.3.	Explain resettlement and rehabilitation issues.	C204.4	7
Q.4.4.	What is consumerism? Mention the objectives and factors affecting consumerism.	C204.4	7
Q.4.5.	What is biomedical waste? Give the steps involve in management of biomedical wastes.	C204.4	7
Q.4.6.	What is an earthquake? Enumerate its effects. Mention the methods to mitigate the disaster.	C204.4	7
Q.5.1.	Explain briefly the population explosion and family welfare program, training and development.	C204.5	7
Q5.2.	Explain a) HIV/AIDS b) various policies and programs for women and child development.	C204.5	7
Q.5.3.	Write short notes on a) women and child welfare b) human rights c) value education. Ii) outline the various family welfare plans in the post independent India.	C204.5	6
Q.5.4.	Explain the role of NGOs in environmental protection and health.	C204.5	7
Q.5.5.	Discuss EIA? Give the objectives, benefits and process of EIA.	C204.5	7
-	Assignments/Seminar/Self study topics.		
A.1.1.	Differentiate a food chain and food web.	C204.1	6
A.1.2.	Distinguish between primary succession and secondary succession.	C204.1	6
A.1.3.	What are endangered and endemic species?	C204.1	6
A.1.4.	Briefly explain the energy flow through ecosystem.	C204.1	6
A.1.5.	Explain the structural and functional components of an ecosystem.	C204.1	6
A.1.6	Explain the effects of nuclear and Radiation pollution.	C204.1	6

A.1.7	What is acid rain? How it is formed? Give its effects.	C204.1	6
A.2.1	Distinguish between water logging & Salinity.	C204.2	6
A.2.2	Give the steps involved in anaerobic digest in process.	C204.2	7
A.2.3	State a few drawbacks of pollution related acts.	C204.2	7
A.2.4	Name any four environmental protection acts.	C204.2	7
A.2.5	Compare nuclear power with coal power.	C204.2	7
A.2.6	What is a biomedical waste? Give the steps involved in management of biomedical waste.	C204.2	7
A.5.1.	Define the term population dynamics.	C204.5	7
A.5.2	What are the policies for women development?	C204.5	7
A.5.3	Define human rights.	C204.5	7
A.5.4	Explain briefly the population explosion.	C204.5	6
A.5.5	Explain the value of education.	C204.5	6
C.2.1	Pollution case studies	C204.2	6
	Bhopal gas tragedy		
	Chernobyl Reactor Incident		
	Environmental Impact of Iceland Volcanic Eruption		
	Cashew in Kasargod, Kerala Poisonous Nuts		
	Groundwater Pollution in India		
	Marine Pollution in Tamil Nadu: Oceans Not Spared		
	• Noise Hits Whales in Hong Kong		
C.3.1	Case Studies	C204.3	6
	• Mining and quarrying in Udaipur		
	Mining in Sariska and Tiger Reserve in Aravallis		
C.4.1	Nuclear Accidents and Holocaust- Case Studies	C204.4	6

Department of Electrical and Electronics Engineering

EC6202 - ELECTRONIC DEVICES AND CIRCUITS [C205]


Important Questions/Assignments/ Self-study Topics/Seminar topics.

1. IMPORTANT QUESTIONS:

S.No.	Important Questions.	COs	POs
UNIT –	I: PN JUNCTION DEVICES		1
Q.1.1.	Draw the symbol and structure of PN and Zener Diode.	C205.1	1
	List the applications of PN and Zener Diode.		
Q.1.2.	Define knee voltage of a diode.	C205.1	1
Q.1.3.	What is meant by depletion region?	C205.1	1
Q.1.4.	Draw the VI characteristics of PN junction diode & Zener diode.	C205.1	1
<mark>Q.1.5.</mark>	Define diode resistance. (or) static and dynamic resistance of PN diode.	C205.1	1
Q.1.6.	Relate voltage and current of forward biased PN junction diode.	C205.1	1,2
<mark>Q.1.7.</mark>	What is transition and diffusion capacitance of PN junction diode?	C205.1	1
<mark>Q.1.8.</mark>	What is a rectifier? Name it's types.	C205.1	1
Q.1.9.	Define PIV & TUF.	C205.1	1
Q.1.10.	Derive the ripple factor of FWR.	C205.1	1
Q.1.11.	Mention the advantage of bridge rectifier over full wave rectifier.	C205.1	1
Q.1.12.	Compare full wave with half wave rectifier.	C205.1	1
<mark>Q.1.13.</mark>	What is LED and Laser Diode? Draw the symbol and structure of it.	C205.1	1
Q.1.14.	What are the advantages and disadvantage of LED?	C205.1	1
Q.1.15.	Compare LED and PN diode.	C205.1	1
<mark>Q.1.16.</mark>	List the applications of LED and LASER diode.	C205.1	1
Q.1.17.	Differentiate between Zener breakdown and Avalanche breakdown.	C205.1	1
UNIT –	II: TRANSISTORS		
Q.2.1.	Draw the symbol & structure of BJT, JFET, MOSFET, UJT, SCR & IGBT.	C205.2	1
Q.2.2.	What is transistor? What are the types and advantages of it.	C205.2	1
Q.2.3.	Draw the circuit of NPN and PNP transistor in CE, CB and CC configurations.	C205.2	1
Q.2.4.	State the relation between α , β and γ .	C205.2	1
Q.2.5.	What are the operating modes of BJT with reference to junction biasing?	C205.2	1
Q.2.6.	Why BJT is called as current controlled device?	C205.2	1
Q.2.7.	Among CE, CB and CC configurations, which one is most popular? Why?	C205.2	1
<mark>Q.2.8.</mark>	What is meant by biasing?	C205.2	1
Q.2.9.	Define pinch-off voltage of FET.	C205.2	1
Q.2.10.	Why FET is called as voltage controlled device?	C205.2	1
<mark>Q.2.11.</mark>	Draw the drain and transfer characteristics of JFET and indicate the operating regions.	C205.2	1
Q.2.12.	Write the relation between JFET parameters.	C205.2	1,2
Q.2.13.	Why are N-channel MOSFET preferred over P-channel MOSFET?	C205.2	1
<mark>Q.2.14.</mark>	Compare BJT, JFET and MOSFET. (Differentiate between JFET & MOSFET)	C205.2	1
Q.2.15.	What is MOSFET? Name its types.	C205.2	1
Q.2.16.	What is a thyristor? Mention two of them.	C205.2	1
Q.2.17.	What is meant by latching and holding current in SCR?	C205.2	1
Q.2.18	Show how an SCR can be triggered on by the application of a pulse to the Gate terminal.	C205.2	1
Q.2.19.	List the merits, demerits and applications of UJT, SCR and IGBT.	C205.2	1
Q.2.20.	What is intrinsic stand-off ratio of a UJT? Draw its equivalent circuit	C205.2	1

<mark>Q.2.21.</mark>	Define Early effect.	C205.2	1
UNIT –	III : AMPLIFIERS		
Q.3.1.	What are amplifiers? Write its uses.	C205.3	1
2.3.2.	Define the four h-parameters.	C205.3	1
<mark>).3.3.</mark>	What is the need of coupling capacitors in amplifier design?	C205.3	1
<mark>).3.4.</mark>	Draw the hybrid small signal model of BJT device. (or) CE, CB & CC Configuration.	C205.3	1
Q.3.5.	Draw the circuit diagram of CS and CD FET amplifier	C205.3	1
<mark>).3.6.</mark>	Draw the small signal equivalent circuit of a CS & CD FET.	C205.3	1
Q.3.7.	Draw the frequency response of an amplifier	C205.3	1
Q.3.8.	What are the effect of coupling and bypass capacitors?	C205.3	1
Q.3.9.	Discuss the significance of cut-off frequencies.	C205.3	1
<mark>2.3.10.</mark>	State Miller's theorem.	C205.3	1
<mark>).3.11.</mark>	Compare the performances of transistor configuration (or) characteristics of CE, CB and	C205.3	1
	CC amplifiers.		
<mark>2.3.12.</mark>	Differentiate between power transistor and signal transistor.	C205.3	1
Q.3.13.	Draw the high frequency equivalent circuit of MOSFET.	C205.3	1
Q.3.14.	What is darlington pair?	C205.3	1
UNIT –	IV : MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER		
2.4.1.	What are cascade amplifiers? Write down the need of cascading the amplifiers.	C205.4	1
Q.4.2.	Define CMRR. What is its ideal value? (or) What is the value of CMRR for ideal cases?	C205.4	1
<u>2.4.3.</u>	Write its significance & List the various methods of improving CMRR.(or) how to improve	C205.4	1
	it?		
Q.4.4.	Mention the classification of differential amplifier. State the advantage of it.	C205.4	1
Q.4.5.	Draw the ideal tuned circuit and write the expression for its resonant frequency.	C205.4	1
Q.4.6.	Draw the ideal and actual response of tuned circuit.	C205.4	1
Q.4.7.	Define Q factor & dissipation factor.	C205.4	1
<mark>Q.4.8.</mark>	What is neutralization? What is the need for neutralization? List the methods of it.	C205.4	1
Q.4.9.	List the advantages, dis advantages and applications of tuned amplifier.	C205.4	1
Q.4.10.	What is power amplifier? Classify it.	C205.4	1
<mark>Q.4.11.</mark>	Define conversion efficiency of power amplifier.	C205.4	1
Q.4.12.	State the feature of large signal amplifier.	C205.4	1
Q.4.13.	Compare the amplifier classes.	C205.4	1
UNIT –	V: FEEDBACK AMPLIFIERS AND OSCILLATORS		1
Q.5.1.	Draw the block diagram of feedback amplifier. Name the types of feedback amplifier.	C205.5	1
Q.5.2.	Name the types of feedback topologies.	C205.5	1
Q.5.3.	Mention the advantages and disadvantages of negative feedback amplifier. How it can be	C205.5	1
	overcome?		
Q.5.4.	Which is the most commonly used feedback arrangement in cascaded amplifier? why?	C205.5	1
Q.5.5.	What is meant by feedback?	C205.5	1
<u></u>	State the Barkhausen criterion for an oscillator.	C205.5	1
Q.5.7.	Write the expression for the frequency of oscillations of RC, LC & Crystal oscillator.	C205.5	1,2
Q.5.8.	List the advantage, disadvantage & application of oscillators.	C205.5	1
2.5.9.	What is the advantage of colpitts oscillator compared to phase shift oscillator?	C205.5	1
Q.5.10.	Compare RC phase shift and wien bridge oscillator.	C205.5	1
. 2.5.11.	Differentiate oscillator with amplifier.	C205.5	1
Q.5.12.	State Piezo electric effect.	C205.5	1
Q.5.13.	Comment the stability of feedback amplifier.	C205.5	1

	Assignments		
UNIT –	I: PN JUNCTION DEVICES <u>Assig</u>	nment No):1
A.1.1.	Determine the GE PN junction diode current for the forward bias voltage of 0.22V at room temperature 25°C with reverse saturation current is 1mA. Taken $\eta = 1$. [Ref: Ex.4.13 / Page 111 / S.Salivahanan-3 rd edition]	C205.1	1,2
A.1.2.	Draw the ideal and practical zener diode equivalent circuit. [Ref: fig 2.30/ Page 64 / David A Bell -5 th edition]	C205.1	1
A.1.3.	In a zener regulator, the dc input is 10V \pm 20%. The output requirements are 5V, 20mA. Assume I _{Z,min} and I _{Z,max} as 5mA and 80A. Design the zener regulator. [Ref: Ex.18.32 / Page 757 / S.Salivahanan-3 rd edition]	C205.1	1,2,3
A.1.4.	A HWR is used to supply 30v DC to a R load of 600 Ω . The diode has a R _F of 25 Ω . Find the maximum value of the ac voltage required at the input. [Ref: Ex.19.4 / Page 486 / R.S.Sedha –revised 2013 edition]	C205.1	1,2
A.1.5.	The V_o of a dc power supply changes from 20v 7to 19.7v when the load is increased from zero to maximum. The voltage also increases to 20.2v when the ac supply increases by 10%. Calculate the load and source effects and the load and line regulations. [Ref: Ex.3.15 / Page 105 / David A Bell -5 th edition]	C205.1	1,2
		nent No:2	
A.2.1.	A JFET amplifier has $g_m = 2.5 \text{mA/V}$, $R_L = 10 \text{k}\Omega$ and $r_D = 500 \text{k}\Omega$. find the value of voltage gain. [Ref: Ex.30.10 / Page 894 / R.S.Sedha –revised 2013 edition]	C205.2	1,2
A.2.2.	Determine the dc bias voltage V_{CE} and the current I_C for the voltage-divider configuration of Fig. R1 = 39k Ω , R2 = 3.9k Ω , Rc = 10k Ω , Re = 1.5k Ω , C1 = C2 = 10 μ F, Ce = 50 μ F, β = 140 & Vcc = 22V. [Ref: Ex.4.7 / Page 159 / Robert Boylestad- 7 th edition] +222 V I_{P_1} I_{P_2} I_{P_1} I_{P_2} $I_{$	C205.2 C205.2	1,2
	$\frac{250 \text{ k\Omega}}{4.7 \text{ k\Omega}}$ $\frac{250 \text{ k\Omega}}{10 \text{ \mu F}} \xrightarrow{10 \text{ V}}{\beta = 90}$ $[\text{Ref: Ex.4.11 / Page 166 / Robert Boylestad- 7th edition]}$		

A.3.3.	For an amplifier, mid band gain = 100 and lower cutoff frequency is 1KHz. Find the gain	C205.3	1,2
	of an amplifier at a frequency of 20Hz.	0205.5	1,2
	AU R2013 / Nov 2014 –2 Marks [Ref: Ex.6.9.2 / Page 6.45 / A.P.Godse-2014]		
A.3.4.	Determine the LF response of the amplifier. The parameters are $V_{cc} = 10V$, $R_1 = 68K\Omega$, R_2	C205.3	1,2
11.3.4.	$= 22K\Omega, R_c = 2.2K\Omega, R_E = 1K\Omega, R_L = 10K\Omega, R_s = 680\Omega, C_1 = C_2 = 0.1 \mu F, C_E = 10\mu F \& \beta = 10000000000000000000000000000000000$	0205.5	1,2
	100.		
	[Ref: Ex.3.17 / Page 3.67 / T.Joel-2014]		
A.3.5.	A FET amplifier in the CS configuration uses a R_L of 500k Ω . the ac drain resistance of the	C205.3	1,2
11.5.5.	device is $100k\Omega$ and the transconductance is 0.8 mAV^{-1} . Calculate the voltage gain of the	0205.5	1,2
	amplifier. [<i>Ref: Ex.9.21 / Page 342 /</i> S.Salivahanan-3 rd edition]		
	TUTORIALS		1
IINIT _		rial No:1,2	18-3
T.1.1	A Si diode has saturation current 7.5 μ A at room temperature 300k. Find the saturation	C205.1	1,2
1.1.1	current at 400k.	C205.1	1,2
T.1.2	Calculate the diffusion capacitance for a Si diode with a 15mA forward current, if the	C205.1	1,2
1.1.4	charge carrier transit time is 70nS.	C205.1	1,2
T.1.3		C205 1	1.2
1.1.3	A Si diode has a bulk resistance of 2Ω and a I_F of $12mA$. What is the actual value of V_F for the device.	C205.1	1,2
TT 1 4	A 4.5v zener is rated at 1.5W. What is the max safe current of the zener?	C205 1	1.2
T.1.4		C205.1	1,2
T.1.5	A FWR delivers 50W to a load of 200Ω . If the ripple factor is 1%, calculate the ac ripple	C205.1	1,2
	voltage across the load.		<u> </u>
	II: TRANSISTORS Tutorial	-	
T.2.1	Calculate β of a transistor when $\alpha = 0.98$.	C205.2	1,2
T.2.2	A transistor has a typical β of 100. If the I _C is 40 mA, what is the value of I _E ?	C205.2	1,2
T.2.3	Calculate $I_C \& I_E$ for a transistor that has $\alpha_{dc} = 0.99$ and $I_B = 150 \mu A$. Determine the value of	C205.2	1,2
	β_{dc} for the transistor.	~~~~	
T.2.4	Determine the I _B for the CE transistor circuit if $I_C = 80$ mA and $\beta = 170$.	C205.2	1,2
T.2.5	A CE amplifier has an $R_i 2.5k\Omega$ and voltage gain of 200. If the input signal voltage is 5mV.	C205.2	1,2
	Find the I_B of the amplifier.		
T.2.6	Design a voltage divider bias circuit for transistor to establish the Q point at $V_{CE}=12v$,	C205.2	1,2
	I_C =1.5mA, stability factor S≤3, β=50, V_{BE} = 0.7v, V_{CC} = 22.5v & R_C =5.6kΩ.		
T.2.7	For CS amplifier, the operating point is defined by $V_{GSQ} = -2.5v$, $V_P = -6v \& I_{dQ} = 2.5mA$	C205.2	1,2
1.2.,			,
	with $I_{DSS} = 8$ mA. Also $R_G = 1M\Omega$, $R_S = 1k\Omega$, $R_D = 2.2k\Omega$ and $V_{DD} = 15v$. calculate g_m , r_d ,		,
	Z_i , Z_o and A_v .		
	Z _i , Z _o and A _v . III : AMPLIFIERS Tutor	ial No:7,8	&9
	Z _i , Z _o and A _v . III : AMPLIFIERS A CE amplifier as shown in fig. Determine the R _i , ac load resistance, voltage gain & output	ial No:7,8 C205.3	
<u>UNIT –</u> T.3.1	Z _i , Z _o and A _v . III : AMPLIFIERS Tutor		& 9
	Z _i , Z _o and A _v . Tutor III : AMPLIFIERS Tutor A CE amplifier as shown in fig. Determine the R _i , ac load resistance, voltage gain & output voltage.		&9
	Z _i , Z _o and A _v . III : AMPLIFIERS A CE amplifier as shown in fig. Determine the R _i , ac load resistance, voltage gain & output voltage. R _c		&9
	Z _i , Z _o and A _v . Tutor III : AMPLIFIERS Tutor A CE amplifier as shown in fig. Determine the R _i , ac load resistance, voltage gain & output voltage.		&9
	Z _i , Z _o and A _v . III : AMPLIFIERS Tutor A CE amplifier as shown in fig. Determine the R _i , ac load resistance, voltage gain & output voltage. R_1 R_2 R_1 S_5 R_1 S_5 R_1 S_5 R_2 R_1		&9
	Zi, Zo and Av.TutorIII : AMPLIFIERSTutorA CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage. R_1 R_2 R_3 R_5		&9
	Zi, Zo and Av.TutorIII : AMPLIFIERSTutorA CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage.A CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage. R_1 R_2 R_1 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 <		&9
	Zi, Zo and Av.TutorIII : AMPLIFIERSTutorA CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage.A CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage. R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_2 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 R_3 R_3 R_4 R_3 R_4 R_5 R_4 <		&9
	Zi, Zo and Av. Tutor III : AMPLIFIERS Tutor A CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage. Image: R_1 and R_2 and R_3 and R_4 and R_5 and R_4 and R_5 and R_4 and R_5 and R_6 a		&9
	Z _i , Z _o and A _v . Tutor III : AMPLIFIERS Tutor A CE amplifier as shown in fig. Determine the R _i , ac load resistance, voltage gain & output voltage. A CE amplifier as shown in fig. Determine the R _i , ac load resistance, voltage gain & output voltage. R ₁ R ₂ F_{c} F_{c} R ₂ F_{c} <td></td> <td>&9</td>		&9
	Zi, Zo and Av.TutorIII : AMPLIFIERSTutorA CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage.A CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage. R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_2 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 R_3 R_3 R_4 R_3 R_4 R_5 R_4 <		&9
	Zi, Zo and Av. Tutor III : AMPLIFIERS Tutor A CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage. R_c 0 + 10 V Rs R_c R_c R_s R_c R_c <tr< td=""><td></td><td>&9</td></tr<>		& 9
	Zi, Zo and Av. Tutor III : AMPLIFIERS Tutor A CE amplifier as shown in fig. Determine the R_i ac load resistance, voltage gain & output voltage. R_c 0 + 10 V Rs R_c R_c R_s R_c R_c <tr< td=""><td></td><td>&9</td></tr<>		&9

	10 ⁻⁴ . fig.		
	$R_{s} C_{i}$ $R_{s} C_{i}$ $R_{s} C_{i}$ $B_{s} C_{i}$ B_{s} $B_{s} C_{i}$ $B_{s} C_{i}$ B_{s} $B_$		
T.3.3	Determine the mid band gain, upper cutoff frequency of a CS amplifier fed with the signal having internal resistance $R_{sig} = 100k\Omega$ as shown in fig. the amplifier has $R_G = 4.7M\Omega$, R_D = $R_L = 15k\Omega$, $g_m = 1mA/v$, $r_o = 150k\Omega$, $C_{gs} = 1pF$ & $C_{gd} = 0.4pF$.	C205.3	1,2
T.3.4	Determine the mid band gain and BW of a CE amplifier as shown in fig. assume lower cutoff frequency is 100Hz. Let $h_{fe} = \beta = 100$, $C_{be} = 4pF$, $C_{bc} = 0.2pF$ & $V_A = \infty$.	C205.3	1,2
T.3.5	A CB transistor amplifier is driven by a voltage source V _s and internal resistance $R_s = 1200\Omega$. The load impedance is a resistor R_L of 1000 Ω . The h parameters are given below: h _{ib} 220 Ω , h _{rb} = 3 x 10 ⁻⁴ , h _{fb} = -0.98, h _{ob} = 0.5 μ A/V. compute A _i , A _V , R _i , R _o & A _P .	C205.3	1,2
T.3.6	A CC amplifier shown in fig has $V_{CC} = 15 \text{ v}$, $R_B = 75k\Omega$ and $R_E = 910\Omega$, $\beta = 100$ and the $R_L = 600\Omega$. Find $r_{in} \& A_V$.	C205.3	1,2

	$R_B + V_{cc}$		
UNIT –	IV : MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER Tutoria	al No:10,1	1&12
T.4.1	A tuned circuit has a resonant frequency of 1600KHz and a BW of 10KHz. What is the value of its Q factor?	C205.4	1,2
T.4.2	CMRR of an amplifier is 100 dB, calculate common mode gain, if the differential gain is 1000.	C205.4	1,2
T.4.3	Evaluate the operating point, differential gain, common mode gain, CMRR and V _o if V _{S1} = 70mv peak to peak at 1kHz and V _{S2} =40mv peak to peak at 1kHz of dual input balanced output differential amplifier, h_{ie} =2.8k Ω fig.	C205.4	1,2
T.4.4	A tuned circuit has a capacitor of 100pF and an inductor of 100 μ H. The resistance of the inductor is 5 Ω . Determine the resonant frequency, impedance at resonance, Q-factor and BW.	C205.4	1,2
T.4.5	A power transistor working in class A operation has zero signal power dissipation of 10W. if the ac output power is 4W, find collector efficiency, power rating of the transistor.	C205.4	1,2
UNIT -	V: FEEDBACK AMPLIFIERS AND OSCILLATORS Tutorial No	0:13, <mark>14&</mark> 1	15
T.5.1	Identify the nature of feedback in fig. let $R_{C1} = 3k\Omega$, $R_{C2} = 500\Omega$, $R_E = 50\Omega$, $R_S = R_F = 1.2k\Omega$, $h_{fe} = 50$, $h_{ie} = 1.1k\Omega$, $h_{re} = h_{oe} = 0$. Determine overall voltage gain A_{Vf} , overall current gain A_{if} , input impedance R_{if} & output impedance R_{of} .	C205.5	1,2

	R_{c1} R_{c2} V_0 V_0 V_0 R_E R_E		
T.5.2	Design an oscillator to operate at a frequency of 10kHz which gives an extremely pure sine	C205.5	1,2
T.5.3	wave output, good frequency stability and highly stabilized amplitude. (wien bridge) Design a RC phase shift oscillator to generate 5kHZ sine wave with 20V peak to peak amplitude. Assume $h_{fe} = \beta = 150$, $C = 1.5nF$, $h_{re} = 1.2k\Omega$.	C205.5	1,2
T.5.4	In colpitts oscillator $C1 = 1nF \& C2 = 100nF$. If the frequency of oscillation is 100kHz find the value of inductor. Also find the minimum gain required for obtaining sustained oscillations.	C205.5	1,2
Т.5.5	In an Hartley oscillator if $L1 = 0.1$ mH, $L2 = 10\mu$ H and mutual inductance between the coils equal to 20 μ H. Calculate the value of C of the oscillatory circuit to obtain frequency of 4110kH and also find the condition for sustained oscillations.	C205.5	1,2
T.5.6	A crystal has the following parameters: $L = 0.33H$, $C = 0.065pF$, $C2 = 1pF$ & $R = 5.5k\Omega$. Find the series resonant frequency and Q factor of the crystal.	C205.5	1,2
	Seminar / Self-study topics.	•	•
Sem.1.	Special purpose diodes	C205.	
Sem.2.	LCD	C205.	
Sem.3.	Opto coupler	C205.	
Sem.4.	Multivibrators	C205.	
Sem.5.	Wave shaping circuits	C205.	
Sem.6.	Cascade amplifier	C205.	
Sem.7.	Transistor Darlington connection	C205.	
Sem.8.	Light activated relay circuits	C205.	
Sem.9.	SMPS	C205.	
Sel.1.	Opto electronic devices	C205.	
Sel.2.	CRO	C205.	
Sel.3.	Filters	C205.	

Department of Electrical and Electronics Engineering

EE6303 -LINEAR INTEGRATED CIRCUITS & APPLICATIONS [C206]

Important Questions /Assignments /Self study /Seminar topics

IMPORTANT QUESTIONS						
S. No.	Questions	COs	POs			
	UNIT – I IC FABRICATION					
Q.1.1	Explain the fabrication process involved in the following circuit diagram.	C206.1	1,3,6,12			
Q.1.2	Explain the process of masking and photo etching in IC fabrication.	C206.1	1			
Q.1.3	Discuss the different ways to fabricate diodes.	C206.1	1,3			
Q.1.4	Explain how a monolithic capacitor can be fabricated.	C206.1	1,3			
Q.1.5	Describe the Epitaxial growth process.	C206.1	1			
Q.1.6	Explain the different types of IC packages with examples.	C206.1	1			
Q.1.7	Briefly explain the various processes involved in fabrication of monolithic IC which integrated diode, capacitance and FET.	C206.1	1,3			
Q.1.8	Explain the process of Ion implantation and state its advantages.	C206.1 C206.1	1			
Q.1.9	List the merits of integrated circuits over discrete circuits.		1			
Q.1.10	Explain the process of Photolithography and diffusion.	C206.1	1			
	UNIT – II CHARACTERISTICS OF OP-AMP					
Q.2.1	Consider the lossy integrator as shown in following figure. For the component value $R_1=10 \text{ k}\Omega$, $R_f=100 \text{ k}\Omega$, $C_f=1 \text{ nF}$, determine the lower frequency limit of integration and show the response for the inputs (1) Step input (2) Square input (3) Sine input $V_i \circ \mathcal{R}_{R_1} \xrightarrow{\mathcal{R}_{f}} V_b$	C206.2	1,2,3			
Q.2.2		C206.2	1,2,3,6,12			
Q.2.3	For a V-I converter shown in following figure, $V_{in} = 5V$, $R = 10k\Omega$, $V_1 = 1V$, find the load current and output voltage V_0 . Assume that the op-amp is initially nulled.					

Q.2.4 For a maximum frequency of 100Hz, design a differentiator circuit and draw the		
Q.2.4 frequency response for the same.	C206.2	1,2,3,6,12
Q.2.5 Design an op-amp circuit to give an output voltage $V_0 = 4V_1 - 3V_2 + 5V_3 - V_4$ where V_1, V_2, V_3 and V_4 are inputs.	C206.2	1,2,3,6,12
Q.2.6 Explain voltage to current converter using operational amplifier. Also explain the application of OP-AMP as integrator.	C206.2	1
Q.2.7 Explain in detail about the stability criteria and different methods of frequency compensation techniques used in operational amplifiers.	C206.2	1
Q.2.8 Define slew rate and explain how it can be improved.	C206.2	1,2,3
Q.2.9 Derive the expression forCMRR of differential amplifier with equivalent circuit and explain any one method to improve CMRR.	C206.2	1,2,3
UNIT – III APPLICATIONS OF OP-AMP		
Q.3.1 A dual slope ADC uses a 16-bit counter and a 4 MHz clock rate. The maximum input voltage is +10 V. The maximum integrator output voltage should be -8 V when the counter has cycled through 2^n counts. The capacitor used in the integrator is 0.1 μ F. Determine the value of the resistor R of the integrator.		1,2,3
Q.3.2 Derive the expression for the log and antilog amplifiers with necessary diagrams.	C206.3	1,2,3
Q.3.3 In a triangular wave generator, given $R_2 = 1.2k\Omega$, $R_3 = 6.8 k\Omega$, $R_1 = 120k\Omega$, $C_1 = 0.01\mu$ F. Determine the peak to peak output amplitude& frequency of triangular wave.	C206.3	1,2,3
Q.3.4 Design a RC phase shift oscillator for a frequency of 1 KHz.	C206.3	1,2,3,6,12
Q.3.5 Discuss the second order high pass filter with its frequency response and design the circuit with the cut-off frequency of 5KHz.	C206.3	1,2,3,6,12
Q.3.6 With a neat circuit diagram, explain the working of Schmitt trigger using op-amp.	C206.3	1
Q.3.7 Explain the working of Instrumentation amplifier.	C206.3	1
Q.3.8 With a neat circuit diagram, explain the operation of R-2R typeD/A converter.	C206.3	1
Q.3.9 Illustrate the working principle of dual slope type A/D converter. Discuss its advantages and limitations.	C206.3	1
Q.3.10 Explain the operation of peak detector and S/H circuit. Also state the advantages and applications of sample and hold circuits.	C206.3	1
Q.3.11 Differentiate a clipper and a clamper with neat sketches.	C206.3	1
<u>UNIT – IV SPECIAL ICs</u>		
Q.4.1 For the VCO circuit, assume $R_2 = 2.2 \text{ K}\Omega$, $R_1 = R_3 = 15 \text{ K}\Omega$ and $C_1 = 0.001 \mu\text{F}$. Assume $V_{\infty} = 12\text{V}$. Determine the output frequency, the change in output frequency if modulating input V_c is varied from 7V to 8V.	C206.4	1,2,3
Q.4.2 For a 555 astable circuit, determine the high state time interval, low state time interval, period, frequency and duty cycle.	C206.4	1,2,3
Q.4.3 With neat diagram, explain the operation of four quadrant variable transconductance multiplier circuit.	C206.4	1
Q.4.4 In the astable multivibrator using 555 timer, $R_A = 2.2K\Omega$, $R_B = 6.8K\Omega$ and $C = 0.01 \mu$ F. Calculate t _{HIGH} , t _{LOW} , free running frequency and Duty cycle.	C206.4	1,2,3
Q.4.5 Explain the working of a voltage controlled oscillator.	C206.4	1
Q.4.6 Explain how frequency multiplication is done using PLL.	C206.4	1
Q.4.7 With the help of neat diagram, explain the working of IC 555 as an astable	C206.4	1
	C206.4	1
Q.4.8With block diagram discuss the principle of operation of NE565 PLL circuit.		
	C206.4 C206.4	1
Q.4.8With block diagram discuss the principle of operation of NE565 PLL circuit.Q.4.9Explain how PLL is used as an AM detector and frequency translator.Q.4.10(i) Draw the functional block diagram & explain the characteristics of IC 555.(ii) Write a short note on Analog multiplier.		
Q.4.8With block diagram discuss the principle of operation of NE565 PLL circuit.Q.4.9Explain how PLL is used as an AM detector and frequency translator.Q.4.10(i) Draw the functional block diagram & explain the characteristics of IC 555.	C206.4	1
Q.4.8With block diagram discuss the principle of operation of NE565 PLL circuit.Q.4.9Explain how PLL is used as an AM detector and frequency translator.Q.4.10(i) Draw the functional block diagram & explain the characteristics of IC 555.(ii) Write a short note on Analog multiplier.	C206.4 C206.4	1
Q.4.8 With block diagram discuss the principle of operation of NE565 PLL circuit. Q.4.9 Explain how PLL is used as an AM detector and frequency translator. Q.4.10 (i) Draw the functional block diagram & explain the characteristics of IC 555. (ii) Write a short note on Analog multiplier. UNIT – V APPLICATION ICs O 5.1 State the advantages of IC voltage regulator and explain the features and internal	C206.4 C206.4	1

	and disadvantages.		
Q.5.4	With a neat diagram, explain the working of step down switching regulator.	C206.5	1
Q.5.5	Explain the working of series voltage regulator.	C206.5	1
Q.5.6	Explain the working principle of IC 8038 function generator.	C206.5	1
Q.5.7	What are IC voltage regulators? Explain the principle of operation of IC LM317 as a voltage regulator.		1
Q.5.8	Explain Isolation Amplifiers and discuss the limitations of linear voltage regulators.	C206.5	1
Q.5.9	Design a regulator using IC 723 to meet the following specifications: $V_0 = 5V$; $I_0 = 100mA$; $V_{in} = 15 \pm 20\%$; $I_{sc} = 150 mA$; $V_{sense} = 0.7V$.	C206.5	1,2,3,6,12
	ASSIGNMENT QUESTIONS		
S. No.	Questions	COs	POs
	UNIT – I IC FABRICATION Draw the cross-sectional view of the following circuit when fabricated by silicon planar technology.		
A.1.1		C206.1	1,3,6,12
A.1.2	Design a 4 k Ω diffused resistor.	C206.1	1,2,3,6,12
A.1.3	Explain why inductors are difficult to fabricate in ICs.	C206.1	1,12
A.1.4	Discuss the various ways for reducing V_T of a MOSFET.	C206.1	1,12
A.1.5	List the merits of integrated circuits over discrete circuits.	C206.1	1,12
	UNIT – II CHARACTERISTICS OF OP-AMP		
A.2.1	Design an amplifier with a gain of +5 using one op-amp.		1,2,3,6,12
A.2.2	A square wave of peak to peak amplitude of 500 mV has to be amplified to a peak-to- peak amplitude of 3 volts, with a rise time of 4 μ s or less. Can a 741C op-amp be used?		1,2,3,12
A2.3	Give the detailed procedure on how to measure the slew rate of the 741C op-amp.		1,3
A.2.4	(a) Design an op-amp differentiator that will differentiate an input signal with $f_{max}=10$ Hz. (b) Draw the output waveform for a sine wave of 1V peak at 100 Hz applied to the differentiator. (c) Repeat part (b) for a square wave input.		1,2,3,6,12
A.2.5	In the circuit shown below, the op-amps are ideal. Determine Vout. [GATE 2013] $-2V \circ 4k\Omega + 15V + 15$	C206.2	1,2,3
T	UNIT – III APPLICATIONS OF OP-AMP		
A.3.1	A dual slope ADC uses a 16-bit counter and a 4 MHz clock rate. The maximum inp voltage is +10 V. The maximum integrator output voltage should be -8 V when the counter has cycled through 2^n counts. The capacitor used in the integrator is 0.1 µ Determine the value of the resistor R of the integrator.	ne	1,2,3
	ANS: $R = 205 \text{ K}\Omega$		

A.3.2	A Schmitt trigger with the upper threshold level $V_{UT} = 0V$ and hysteresis width $V_H = 0.2V$ converts a 1 kHz sine wave of amplitude $4V_{pp}$ into a square wave. Calculate the time duration of the negative and positive portion of the output waveform. ANS: $T_1 = 0.516$ ms, $T_2 = 0.484$ ms		1,2,3
A.3.3	List the applications of Instrumentation amplifier & Comparator.		1,6,12
A.3.4	Consider a four bit D to A converter. The analog value corresponding to digital signals of values 0000 and 0001 are 0V and 0.0625V respectively. Determine the analog value (in Volts) corresponding to the digital signal 1111. [GATE 2015] ANS: 0.9225		1,2,3

SEMINAR TOPICS

UNIT – II CHARACTERISTICS OF OPAMP

- 1. Voltage to current converter with floating load
- 2. Voltage to current converter with Grounded load
- 3. Applications of V-I converter
- 4. Current to voltage converter
- 5. Applications of I-V converter
- 6. Inverting Summer
- 7. Non inverting summer
- 8. Subtractor/Difference amplifier

UNIT – IV SPECIAL ICs

- 1. Linear Ramp Generator using 555 Timer
- 2. Pulse Width modulation using 555 Timer
- 3. Missing Pulse Detector using 555 Timer
- 4. Square Wave generator using 555 timer
- 5. 555 Timer as Schmitt Trigger

SELF-STUDY TOPICS

S. No	UNIT	TOPIC	Books to be referred
1	П	Adder - Subtractor	Ramakant A.Gayakward, 'Op-amps and Linear Integrated Circuits', IV Edition, Pearson Education, 2003 / PHI. 2000.
2	Ш	Triangular Wave Generator	D.Roy Choudhary, Sheil B.Jani, 'Linear Integrated Circuits', IV Edition, New Age, 2003.
3	v	Advantages & Disadvantages of SMPS	David A.Bell, 'Op-amp & Linear ICs', Oxford, 2013.

Question Paper Code : 72068

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Third Semester

Mechanical Engineering

MA 6351 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to Mechanical Engineering (Sandwich)/Aeronautical Engineering/ Agriculture Engineering/Automobile Engineering/B.E. Biomedical Engineering/ B.E. Civil engineering/B.E. Computer Science and Engineering/Electrical and Electronics Engineering/Electronics and Communication Engineering/Electronics and Instrumentation Engineering/Geoinformatics Engineering/Industrial Engineering/Industrial Engineering and Management/Instrumentation and Control Engineering/Manufacturing Engineering/Marine Engineering/Materials Science and Engineering/Mechanical and Automation Engineering/Mechatronics Engineering/Medical Electronics Engineering/Petrochemical Engineering/ Production Engineering/Robotics and Automation Engineering/Biotechnology/ Chemical Engineering/Chemical and Electrochemical Engineering/Food Technology/Information Technology/Petrochemical Technology/Petroleum Engineering/Plastic Technology/Polymer Technology)

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Form the partial differential equation by eliminating arbitrary function 'f' from $z = e^{ay} f(x + by)$.
- 2. Solve $(D^3 D^2D' 8DD'^2 + 12D'^3)z = 0$.
- 3. State the sufficient condition for a function f(x) to be expressed as a Fourier series.

4. If the Fourier series of the function $f(x) = x + x^2$, in the interval $(-\pi, \pi)$ is $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \left[\frac{4}{n^2} \cos nx - \frac{2}{n} \sin nx \right], \text{ then find the value of the infinite series}$ $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ 5. Write all possible solutions of one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial r^2}$.

- 6. Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$.
- 7. If F(s) is the Fourier transform of f(x), prove that $F\{f(x-a)\} = e^{ias}F(s)$.
- 8. Find Fourier Sine transform of $\frac{1}{2}$.
- Find the Z-transform of aⁿ.
- 10. State initial and final value theorems on Z-transforms.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Find the general solution of $(z^2 2yz y^2) p + (xy + zx)q = xy zx$. (8)
 - (ii) Find the general solution of $(D^2 + 2DD' + D'^2)z = x^2 y + e^{x-y}$. (8)

ı	0	s.			
ŧ		3	3	٣	
٩,	÷	e,	4	2	

- (b) (i) Find the general solution of z = px + qy + p² + pq + q². (8)
 (ii) Find the general solution of
 - $(D^2 3DD' + 2D'^2 + 2D 2D')z = \sin(2x + y).$ (8)

12. (a) (i) Find the Fourier series of period 2π for the function $f(x) = x \cos x$ in $0 < x < 2\pi$. (8)

(ii) Find the Fourier series expansion for y = f(x) up to second harmonic from the following data: (8)

x: 0 1 2 3 4 5 y: 9 18 24 28 26 20

Or

(b) (i) Find the Fourier half-range cosine series of $f(x) = \begin{cases} x, & \text{in } 0 < x < 1 \\ 2 - x, & \text{in } 1 < x < 2 \end{cases}$ (8)

(ii) Find the complex form of the Fourier series of $f(x) = e^{-\alpha x}$ in, -l < x < l. (8)

2

- 13. (a) A tightly stretched string of length 2l is fastened at x = 0 and x = 2l. The midpoint of the string is then taken to height 'b' transversely and then released from rest in that position. Find the lateral displacement of the string. (16)
 - Or
 - (b) A rectangular plate with insulated surfaces is 20 cm wide and so long compared to its width that it may be considered infinite in length without introducing an appreciable error. If the temperature while the other short edge x=0 is given by $u = \begin{bmatrix} 10y & \text{for } 0 \le y \le 10 \\ 0 & \text{for } 0 \le y \le 10 \end{bmatrix}$ and the two

short edge x = 0 is given by $u = \begin{cases} 10y & \text{for } 0 \le y \le 10 \\ 10(20 - y) & \text{for } 10 \le y \le 20 \end{cases}$ and the two

long edges as well as the other short edge are kept at 0°c, find the steady state temperature distribution u(x, y) in the plate. (16)

14. (a) Find the Fourier transform of
$$f(x)$$
 given by $f(x) = \begin{cases} 1 & \text{for } |x| < 2 \\ 0 & \text{for } |x| > 2 \end{cases}$ and

hence evaluate
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$
 and $\int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{2} dx$. (16)

(b) (i) Find the Fourier cosine transform of $e^{-a^3x^3}$ for any a > 0. (8)

(ii) Evaluate
$$\int_{0}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$$
 using Fourier transforms. (8)

15. (a) (i) Find Z-transform of
$$\frac{2n+3}{(n+1)(n+2)}$$
. (8)

(ii) Using Convolution theorem, find
$$Z^{-1} \begin{bmatrix} \frac{8z^2}{(2z-1)(4z+1)} \end{bmatrix}$$
. (8)

Or

(b) (i) Find
$$Z^{-1}\left[\frac{4z^3}{(2z-1)^2(z-1)}\right]$$
, by the method of partial fractions. (8)

(ii) Using Z-transforms, solve the equation $y_{n+2} - 7y_{n+1} + 12y_n = 2^n$, given that $y_0 = y_1 = 0$. (8)

76

Reg. No.

Question Paper Code: 80608

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016 Third Semester

Civil Engineering

MA 6351 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to all branches except Environmental Engineering, Textile Chemistry,

Textile Technology, Fashion Technology and Pharmaceutical Technology)

(Regulations 2013)

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- Find the PDE of all spheres whose centers lie on the x-axis. 1.
- Find the complete integral of $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$. 2.
- State the Dirichlet's conditions for a function f(x) to be expanded as a Fourier 3. series.
- 4. Expand f(x) = 1, in $(0, \pi)$ as a half-range sine series.
- State the assumptions in deriving one-dimensional wave equation. 5.
- State the three possible solutions of the one-dimensional heat flow (unsteady 6. state) equation.
- State change of scale property on Fourier transforms. 7.

Find the infinite Fourier sine transform of $f(x) = \frac{1}{x}$ 8.

- State convolution theorem on Z-transform. 9.
- Find $Z \left| \frac{1}{n(n+1)} \right|$. 10.

Time : Three hours

PART B — $(5 \times 16 = 80 \text{ marks})$

Find the partial differential equations of all planes which are at a 11. (a) (i) constant distance 'k' units from the origin. (8)

Solve the Lagrange's equation $x(z^2-y^2)p+y(x^2-z^2)q=z(y^2-x^2)$.(8) (ii) Or

(i) Form the PDE by eliminating the arbitrary functions 'f' (b) and ' φ ' from the relation $z = x f\left(\frac{y}{x}\right) + y\varphi(x)$. (8)

Solve $(D^2 + DD' - 6D'^2)z = y \cos x$. (ii) (8)

Expand $f(x) = x^2$ as a Fourier series in the interval $(-\pi,\pi)$ and (i) 12. (a)

hence deduce that $1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$. (8)

Obtain the constant term and the coefficient of the first sine and (ii) cosine terms in the Fourier expansion of y as given in the following (8)table:

- Expand $f(x) = e^{-\alpha x}, -\pi < x < \pi$ as a complex form Fourier series. (8)(b) (i)
 - Expand $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \end{cases}$ as a series of cosines in the (ii) (8)interval (0,2).
- A tightly stretched string of length T with fixed end points is initially at 13. (a) rest in its equilibrium position. If it is set vibrating by giving each point a velocity $y_t(x,0) = v_0 \sin\left(\frac{3\pi x}{l}\right) \cos\left(\frac{\pi x}{l}\right)$, where 0 < x < l. Find the displacement of the string at a point, at a distance x from one end at any

(16)instant 't'. Or

A square plate is bounded by the lines x=0, x=20, y=0, y=20. Its faces are (b) insulated. The temperature along the upper horizontal edge is given by u(x,20) = x(20-x), 0 < x < 20, while the other three edges are kept at 0°C. Find the steady state temperature distribution u(x, y) in the plate. (16)

14. (a) (i) Find the Fourier transform of
$$f(x) = \begin{cases} 1-|x|, & |x|<1\\ 0, & |x|>1 \end{cases}$$
 and hence

deduce that
$$\int_0^\infty \left[\frac{\sin t}{t}\right]^4 dt = \frac{\pi}{3}.$$
 (8)

Find the infinite Fourier sine transform of $f(x) = \frac{e^{-xx}}{x}$ hence deduce (ii) the infinite Fourier sine transform of $\frac{1}{x}$. (8)

15.

6

 $y_0 = y_1 = 0$.

- Find the infinite Fourier transform of $e^{-a^2x^2}$ hence deduce the (b) (i) infinite Fourier transform of $e^{-x^2/2}$. (8)
 - Solve the integral equation $\int_0^\infty f(x) \cos \lambda x \, dx = e^{-\lambda}$, where $\lambda > 0$. (8) (ii)

a) (i) Find
(1)
$$Z[n^3]$$
 (2) $Z[e^{-t}t^2]$. (4+4)

(ii) Evaluate
$$Z^{-1}\begin{bmatrix} \frac{9z^3}{(3z-1)^2(z-2)} \end{bmatrix}$$
, using calculus of residues. (8)
Or

(b) (i) Using convolution theorem, evaluate
$$Z^{-1}\left[\frac{z^2}{(z-a)(z-b)}\right]$$
. (8)
(ii) Using Z-transform, solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ given that

2

80608

(8)

Question Paper Code : 71764

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Third Semester

Electrical and Electronics Engineering

EE 6301 - DIGITAL LOGIC CIRCUITS

(Common to Electronics and Instrumentation Engineering, Instrumentation and Control Engineering)

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Reduce a(b+bc')+ab'.

- 2. Convert 14310 into its binary and binary coded decimal equivalent.
- 3. Write the POS form of the SOP expression f(x, y, z) = x'yz + xyz' + xy'z.
- 4. Design a Half Subtractor.
- 5. Give the characteristic equation and characteristic table of a T Flip Flop.
- 6. State the differences between Moore and Melay state machines.
- 7. What is a flow table? Give example.
- 8. State the difference between PROM, PAL and PLA.
- 9. Give the syntax for package declaration and package body in VHDL.
- 10. Write the VHDL code for a 2×1 multiplexer using behavioral modeling.

			PAPT P (5 to as	
			PART B — $(5 \times 13 = 65 \text{ marks})$	
11.	(a)	(i)	Design a odd-parity hamming code generate data and explain their logic.	or and detector for 4-b
		(ii)	Convert $FACE_{16}$ into its binary, octal and de	ecimal equivalent.
			Or	
	(b)	(i)	With circuit askes at the	
	()	(4)	With circuit schematic explain the wor TTL NAND gate.	king of a two-inpu
		(ii)	Compare Totem Pole and open collector outp	uts.
12.	(a)	(i)	Reduce the following minterms using Karnau	igh – Map
		(ii)	$f(w, x, y, z) = 2m(0, 1, 3, 5, 6, 7, 8, 12, 14) + \Sigma c$	(9 15) (7)
		(11)	Implement the following function using a sum $f(a, b, c) = \sum m (3, 7, 4, 5).$	table multiplexer
			((i, i, i, o).	. (6)
			Or	
	(b)	(i)	Design a 3×8 decoder and explain its operator.	eration as a minterm (7)
		(ii)	Design a full adder using only NOR gates.	. (6)
3.	(a)	(i)	Draw and explain the operation of a Master -	
		(ii)	Design a 5-bit ring counter and mention its ap	
				plications. (6)
			Or	
	(b)	(i)	Design a 4-bit parallel-in serial-out shift re Flops.	egister using D Flip (7)
		(ii)	Using partitioning minimization procedure	1172.70
			ovare table .	
			Present state Next state Output	(6)
			w = 0 w = 1 Z	
			A B C 1	
			B D F 1	
			C F E O	
			D B G 1	
			E F C O	
			F E D O	
			G F G O	
			2	71764
				A Comment

14.

15.

(a) A control mechanism for a vending machine accepts nickels and dimes. It dispense merchandise when 20 cents is deposited; it does not give change if 25 cents is deposited. Design the FSM that implements the required control, using as few states as possible. Find a suitable assignment and derive next-state and output expressions. (13)

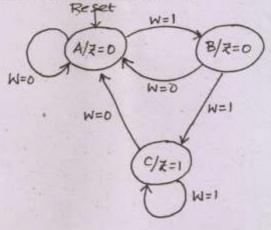
Or

- (b) (i) Implement the following logic and analyse for the pressure of any hazard $f = x_1x_2 + \overline{x}_1x_3$. If hazard is present briefly explain the type of hazard and design a hazard-free circuit. (7)
 - (ii) Implement the following functions using programmable logic array : $f_1(x, y, z) = \sum m(0, 1, 3, 5, 7)$

$$f_2(x, y, z) = \sum m(2, 4, 6).$$

 (a) Design a 3 -bit magnitude comparator and write the VHDL code to realize it using structural modeling. (13)

Or


(b) Design a 4 × 4 array multiplier and write the VHDL code to realize it using structural modeling. (13)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Design a CMOS inverter and explain its operation. Comment on its characteristics such as Fan-in, Fan-out power dissipation, propagation delay and noise margin. Compare its advantages over other logic families. (15)

Or

(b) Write the VHDL code for the given state diagram, using behavioral modeling. Design it using one-hot state assignment and implement it using Programmable Array Logic (PAL). (15)

3

71764

(6)

Question Paper Code: 80366

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Third Semester

Electrical and Electronics Engineering EE 6301 — DIGITAL LOGIC CIRCUITS

(Common to Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)

(Regulations 2013)

Time : Three hours

1.

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Construct OR gate and AND gate using NAND gates.
- 2. Convert the following Excess 3 numbers into decimal numbers.
 - (a) 1011
 - (b) 1001 0011 0111
- Convert the given expression in canonical SOP form Y = AB + A'C + BC'

4. Draw the truth table of 2 :1 MUX.

- 5. Differentiate Mealy and Moore model.
- 6. Draw the state diagram of JK flip flop.
- 7. What is static hazard and dynamic hazard?
- 8. Define races in asynchronous sequential circuits.
- 9. Write VHDL behavioral model for D flip flop.
- 10. Write the VHDL code for a logical gate which gives high output only when both the inputs are high.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a)

(i)

- Explain with an aid of circuit diagram the operation of 2 input CMOS NAND gate and list out its advantages over other logic families. (10)
- (ii) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction $Y \cdot X$ by using 2's complements. (3)

Or

- (b) (i) Explain in detail the usage of Hamming codes for error detection and error correction with an example considering the data bits as 0101. (10)
 - (ii) Convert 23.62510 to octal (base 8).

(3)

Simplify the logical expression using K-map in SOP and POS form (a) 12. $F(A,B, C, D) = \Sigma m (0, 2, 3, 6, 7) + d(8, 10, 11, 15).$

Or

- Design a full subtractor and realise using logic gates. Also, implement (b) (13)the same using half subtractors
- Design a sequence detector that produces an output '1' whenever the 13. (a) (13)non-overlapping sequence 101101 is detected.

Or

- (7)Explain the realization of JK flip flop from T flip flop. (i) (b) (6)
 - Write short notes on SIPO and draw the output waveforms. (ii)
- Design an asynchronous circuit that has two inputs x1 and x2 and one 14. (a) output z. The circuit is required to give an output whenever the input sequence (0,0), (0,1) and (1, 1) received but only in that order (13)

Or

Design a PLA structure using AND and OR logic for the following (b) (i) (10)functions.

 $F1 = \Sigma m(0, 1, 2, 3, 4, 7, 8, 11, 12, 15)$

 $F2 = \Sigma m (2, 3, 6, 7, 8, 9, 12, 13)$

 $F3 = \Sigma m (1, 3, 7, 8, 11, 12, 15)$

 $F4 = \Sigma m (0, 1, 4, 8, 11, 12, 15)$

(ii) Compare PLA and PAL circuits.

Explain in detail the concept of structural modeling in VHDL with an (a) (13)example of full adder.

Or

- (i) Write short notes on built- in operators used in VHDL programming. (6) (b)
 - (ii) Write VHDL coding for 4 × 1 Multiplexer.

PART C — $(1 \times 15 = 15 \text{ marks})$

(a) 16.

15.

Assume that there is a parking area in a shop whose capacity is 10. No more than 10 cars are allowed inside the parking area and the gate is closed as soon as the capacity is reached. There is a gate sensor to detect the entry of car which is to be synchronized with the clock pulse. Design and implement a suitable counter using JK flip flops. Also, determine the number of flip flops to be used if the capacity is increased to 50. (15)

Or

Design a 4 bit code converter which converts given binary code into a (b) code in which the adjacent number differs by only 1 by the preceding number. Also, develop VHDL coding for the above mentioned code (15)converter.

2

80366

(13)

(7)

Question Paper Code : 71765

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Third Semester

Electrical and Electronics Engineering

EE 6302 — ELECTROMAGNETIC THEORY

(Regulations 2013)

Time : Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the sources of electromagnetic fields?
- 2. State Stoke's theorem.
- 3. The electric potential near the origin of a system of co-ordinates is $V = 5x^2 + 8y^2 + 10z^2$. Find the electric field at (1,2,3).
- 4. What is a conservative field?
- 5. What is vector magnetic potential?
- 6. Define Biot-Savart's law.
- Find the emf induced in a conductor of length 1m moving with a velocity of 100 m/s perpendicular to a field of 1 Tesla.
- 8. Differentiate transformer and motional emf.
- Find the velocity of a plane wave in a lossless medium having a relative permitivity 2 and relative permeability of unity.
- 10. What is skin depth?

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) (i) State and prove Gauss divergence theorem.

(6)

 (ii) Derive an expression for electric field intensity due to infinite line charge using Coulomb's law. (7)

Or

(b) Evaluate D and E in all regions for a concentric spherical shell containing charge Q on it. Assume the charge distributions are infinite in extent.

(13)

12.	(a)	 Derive the electric potential due an uniformly charged infinite with uniform charge distribution. 	line (8)
		(ii) Obtain the electric potential due to electric dipole.	(5)
		Or	
	(b)	(i) Derive the electrostatic boundary conditions.	(8)
		(ii) Derive the expression for capacitance of a parallel plate capacit	or.(5)
13.	(a)	 Obtain an expression for the magnetic field intensity due to stra- finite conductor carrying current I amperes using Biot Savart's 	
		(ii) State and prove Ampere's law.	(5)
		Or	
	(b) .	(i) State and prove magnetic boundary conditions.	(7)
		 (ii) Find the torque about y-axis for the two conductors of le T' carrying current in opposite directions separated by a distance 'w' in an uniform magnetic field in x-direction. 	Constraints of the second
14.	(a)	Derive the Maxwell's equations both in integral and point forms.	(13)
		. Or	
	(b)	(i) Explain the relation between field theory and circuit theor detail.	ry in (6)
		(ii) A circular loop conductor having a radius of 0.15m is place X-Y plane. This loop consists of a resistance of 20Ω . If the mag flux density is B= 0.5 sin $10^3 \tilde{a}_x$ Tesla, Find the current through loop.	netic
15.	(a)	Deduce the equation of the propagation of the plane electromag waves in free space.	netic (13)
		Or	
	(b)	State and prove Poynting theorem.	(13)
		PART C — (1 × 15 = 15 marks)	
16.	(a)	Given that $D = 5r^2/4 \ \bar{a}$, C/m^2 . Evaluate both the sides of diverge theorem for the volume enclosed by $r = 4m$ and $\theta = \pi/4$.	gence (15)
		Or	
-	(b)	A free space – silver interface has E (incident) = 100 V/m on the space side. The frequency is 15 MHz and the silver constants $\varepsilon_r - \mu_r = 1, \sigma = 61.7$ MS/m. Determine E (reflected) and E (transmist at the interface.	are

Question Paper Code : 80367

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Reg. No. :

Third Semester

Electrical and Electronics Engineering EE 6302 — ELECTROMAGNETIC THEORY

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Determine the angle between $A = 2\vec{a}_x + 4\vec{a}_y$ and $B = 6\vec{a}_y 4\vec{a}_z$.
- 2. State Stoke's Theorem.
- 3. Find the capacitance of an isolated spherical shell of radius a.
- 4. Find the magnitude of D for a dielectric material in which E = 0.15 MV/m and $\varepsilon_r = 5.25$.
- 5. State Ampere's Circuital Law.
- 6. A conductor 4 m long lies along the y-axis with the current of 10 A in a_y direction, if the field is $B = 0.05 a_x$ Tesla calculate the force on the conductor.
- 7. Moist soil has conductivity of 10^{-3} S/m and $\varepsilon_r = 2.5$, determine the displacement current density if $E = 6.0 \times 10^{-6} \sin 9.0 \times 10^9$ t (V/m).
- 8. State Faraday's Law.
- 9. Define standing wave ratio.
- 10. State the properties of uniform plane wave.

PART B --- (5 × 13 = 65 marks)

- 11. (a) (i) State and Prove Divergence theorem
 - (ii) Transform $4\vec{a}_z 2\vec{a}_y 4\vec{a}_z$ at (2, 3, 5) to cylindrical coordinates. (5)

Or

- (b) (i) Derive the expression for electric field intensity due to uniformly charged circular disc of $\sigma c/m^2$. (8)
 - (ii) Find the force on a charge Q_1 of 20 μC at (0, 1, 2)m due to Q_2 of 300 μC at (2, 0, 0)m. (5)

12. (a) (i) Find the potential at $r_A = 5$ m with respect to $r_B = 15$ m due to point charge Q = 500 pC at the origin and zero reference at infinity. (6)

(ii) Find the capacitance of a parallel plate capacitor with dielectric $\varepsilon_{r1} = 1.5$ and $\varepsilon_{r2} = 3.5$ each occupy one half of the space between the plates of area 2 m² and $d = 10^{-3}$ m. (7)

Or

(8)

- In spherical coordinates V = -25 V on a conductor at r = 2 cm and (b) · (i) V = 150 V at r = 35 cm. The Space between the conductor is a dielectric of $\varepsilon_r = 3.12$. Find the surface charge densities on the conductor. (10)
 - Define Laplace and Poisson's equation. (3)(ii)
- Derive the expression for magnetic field intensity due to infinitely long 13. (a) straight conductor carrying a current of I amps along Z-axis.

Or

- Determine H for a solid cylindrical conductor of radius a, where the (b) (i) current I is uniformly distributed over the cross section. (5)
 - Calculate the inductance of a ring shaped coil of mean diameter (ii) 20 cm, wound on a wooden core of 2 cm diameter containing (8)200 turns.
- Derive Maxwell's equation in both point and integral form for conducting 14. (a) medium and free Space. (13)

Or

- Explain the concept of emf induction in static and time varying (b) (i) magnetic field. (8)
 - In a material for which $\sigma = 5.0$ S/m and $\varepsilon_r = 1$ with E = 250 sin (ii) 1010 t (V/m). Find Jc and JD and also the frequency at which they equal magnitudes. (5)
- Derive the expression for electromagnetic wave equation for conducting 15. (a) and perfect dielectric medium. (13)

Or

A 6580 MHz uniform plane wave is propagating in a material medium of (b) $\varepsilon_r = 2.25$. If the amplitude of the electric field intensity of lossless medium is 500 V/m. Calculate the phase constant, propagation constant, velocity, wavelength and intrinsic impedance. (13)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

A plane wave travelling in +z direction in free space (z < 0) is normally 16. (a) incident at z = 0 on a conductor (z > 0) for which $\sigma = 61.7$ MS/m, $\mu_r = 1$. The free space E wave has a frequency f = 1.5 MHZ and an amplitude of 1.0 V/m at the interface it is given by $E(0, t) = 1.0 \sin 2\pi f t a_{\star}$ (V/m). Analyse the wave and predict magnetic wave H(z, t) at z > 0. (15)

Or

2

Given that $A = 30e^{-r}\vec{a}_r - 2z\vec{a}_r$ in cylindrical coordinates, evaluate both (b) sides of divergence theorem for the volume enclosed by r = 2, z = 0(15)and z = 5.

80367

(13)

Question Paper Code: 71947

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Third/Fourth/Fifth/Sixth/Seventh/Eighth Semester

Mechanical Engineering

GE 6351 - ENVIRONMENTAL SCIENCE AND ENGINEERING

(Common to Aeronautical Engineering, Agriculture Engineering, Automobile Engineering, Biomedical Engineering, Civil Engineering, Computer Science and Engineering, Electrical and Electronics Engineering, Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Environmental Engineering, Geoinformatics Engineering, Industrial Engineering, Industrial Engineering and Management, Instrumentation and Control Engineering, Manufacturing Engineering, Marine Engineering, Materials Science and Engineering, Mechanical and Automation Engineering, Mechatronics Engineering, Medical Electronics Engineering, Petrochemical Engineering, Production Engineering, Robotics and Automation Engineering, Bio technology, Chemical Engineering, Chemical and Electrochemical Engineering, Fashion Technology, Food Technology, Handloom and Textile Technology, Information Technology, Petrochemical Technology, Petroleum Engineering, Pharmaceutical Technology, Plastic Technology, Polymer Technology, Textile Chemistry, Textile Technology)

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What do you understand by 'species biodiversity'? Give one example.
- 2. How is nitrogen fixed in soil?
- 3. What are the characteristics of PAN?
- 4. Mention the effects of nuclear wastes in humans.
- 5. Give any two reasons for marine pollution.
- 6. Write any two problems caused by high saline soils.

- 7. How is cyclone formed?
- 8. When does rehabilitation arise? Mention any one problem to government during rehabilitation.
- 9. What is meant by value education?
- 10. Mention any two welfare programs for children adopted in India.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

(i) Explain the structure and function of grassland eco system. (6)
 (ii) Substantiate the statement, 'India is a megadiversity nation'. (7)

Or

- (b) (i) Write the importance of biological hazard in the environment. (6)
 - (ii) Explain the methods of conservation of biodiversity. (7)
- (a) (i) How is noise pollution controlled? (6)
 (ii) Write a detailed note on photo chemical reactions taking place in the atmosphere. (7)

Or

(b)	(i)	What are the effects of heavy metals in aquatic environment.	(6)
-----	-----	--	-----

- (ii) What is a particulate matter? How is it controlled by using equipment? (7)
- 13. (a) (i) What are the reasons of deforestation?
 (6)

 (ii) How is biogas generated?
 (7)

Or

- (b) Explain in detail the effect of modern agriculture which includes both beneficial and adverse effects. (13)
- 14. (a) What is green chemistry? Explain the various principles of green chemistry with suitable examples. (13)

Or

- (b) Explain the features of the following :
 - (i) Air Act
 - (ii) Forest conservation Act.

2

71947

(13)

15.

- (a) Describe the following :
 - (i) Environment and human health relation.
 - (ii) HIV and AIDS.

Or

(b) What do you mean by environmental impact analysis? What are the methods followed for EIA? (13)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Enlist the rules of management and handling biomedical waste and analyse critically the problems associated with the implementation.

Or

(b) Analyse the environmental effects of extracting and using mineral resources and write the remedies taken.

(13)

Question Paper Code : 80507

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Third Semester

Civil Engineering

GE 6351 — ENVIRONMENTAL SCIENCE AND ENGINEERING

(Common to Third Semester Computer Science and Engineering, Electrical and Electronics Engineering, Electronics and Instrumentation Engineering, Instrumentation and Control Engineering, Environmental Engineering, Robotics and Automation Engineering, Information Technology, Polymer Technology, Textile Chemistry, Textile Technology, Fashion Technology, Biotechnology, Plastic Technology, Pharmaceutical Technology and Petrochemical Technology)

(Also common to Fourth Semester Agriculture Engineering, Geoinformatics Engineering, Mechanical Engineering and Chemical Engineering and Medical Electronics)

(Also common to Fifth Semester Electronics and Communication Engineering, Mechatronics Engineering, Automobile Engineering, Aeronautical Engineering, Production Engineering, Mechanical and Automation Engineering, Petrochemical Engineering, Petroleum Engineering)

(Common to Sixth Semester Biomedical Engineering and Materials Science and Engineering)

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \cdot \text{marks})$

- 1. Define ecosystem diversity.
- 2. Write about any two chemical hazards present in the environment.
- 3. Mention the measures to control thermal pollution caused by industries.
- 4. List any four water quality parameters and their importance.
- 5. What is Biogas? Mention its uses.
- 6. Define Sustainable lifestyle.
- 7. Write any four principles of green chemistry.

			PART B — $(5 \times 13 = 65 \text{ marks})$
11. ((a) ((i)	Describe the function of an ecosystem using energy flow and material cycling. (7)
	((ii)	Define In-situ and Ex-situ conservation of biodiversity and explain. (6)
			Or
(1	b) ((i)	Explain the stages in ecological succession using appropriate terminology. (7)
	((ii)	Justify India to be a mega biodiversity nation with the required data. (6)
12. (a	a) ((i)	Discuss about the causes, impacts and control measures of ozone depletion in the atmosphere. (7)
	(ii)	Write a flow sheet and explain the steps involved in Solid Waste Management. (6)
			Or
(1	o) (i)	Mention any four air pollutants with their sources and emission control measures. (7)
	(ii)	What are the effects of Marine pollution? (6)
13. (a	a) (i)	Explain the stages in desertification. (7)
	(ii)	What is over utilisation of water resources? Mention the remedial measures. (6)
			Or
(1	o) (i)	Write a note on (1) use of fertilizers and pesticides (2) soil salinity problems. (7)
	(ii)	List the impact of deforestation on the environment. (6)
14. (8	a) (i)	What is cyclone? Describe cyclone management using fore casting. (7)
	(ii)	What is Ecomark? Explain. (6)
			Or
(1) (i)	Describe about The Air Act 1981. (7)
-	(ii)	Name any three significant biomedical wastes and their safe disposal. (6)

What is consumerism? How does it affect the environment?

What are the objectives of Women Welfare systems?

Define EIA and its benefits.

8.

9.

10.

Question Paper Code : 71723

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Second/Third Semester

Electrical and Electronics Engineering

EC 6202 — ELECTRONIC DEVICES AND CIRCUITS

(Common to Biomedical Engineering, Electronics and Instrumentation Engineering, Instrumentation and Control Engineering, Medical Electronics Engineering, Robotics and Automation Engineering)

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

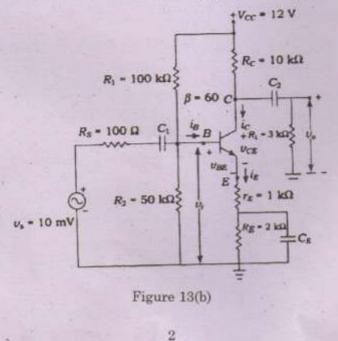
PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Differentiate between zener breakdown and avalanche breakdown.
- 2. Mention some of the applications of laser diode.
- 3. Draw the two transistor equivalent circuit of SCR.
- 4. A transistor has a typical β of 100. If the collector current is 40 mA, what is the value of emitter current?
- 5. A common emitter amplifier has an input resistance 2.5 $k\Omega$ and voltage gain of 200. If the input signal voltage is 5mV. Find the base current of the amplifier.
- 6. Define an intrinsic stand off ratio of UJT and draw its equivalent circuit.
- 7. Compare the performances of CE and CC configuration.
- 8. Define a common mode rejection ratio for a differential amplifier. What is the value of CMRR for ideal cases?
- 9. A tuned circuit has a resonant frequency of 1600 kHz and a bandwidth of 10 kHz. What is the value of its Q factor?
- Give the two Barkhausen conditions required for sinusoidal oscillation to be sustained.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Draw the circuit diagram and explain the working of full wave bridge rectifier with output filter and derive the expression of average output current and ripple factor. (13)

Or


- (b) (i) Drive the expression for diffusion capacitance of PN junction diode. (7)
 - (ii) Explain how zener diode can be acts as a voltage regulator. (6)
- 12. (a) (i) Explain the drain and transfer characteristics of Enhancement type MOSFET. (7)
 - (ii) Describe the working of Silicon controlled rectifier with neat diagram.
 (6)

Or

- (b) (i) Describe the construction and working of IGBT with neat diagram. (7)
 - (ii) Sketch and explain the typical shape of drain characteristics of JFET for V_{GS} = 0 with indication of four region clearly.
 (6)
- (a) Draw the circuit diagram of a common drain MOSFET amplifier. Derive the expression for its voltage gain, input resistance and output resistance. (13)

Or

(b) Figure 13(b) shows a common-emitter amplifier. Determine the input resistance, ac load resistance, voltage gain and output voltage. (13)

 (a) Draw the circuit diagram and explain the working of a differential amplifier using FET. Derive the expression for differential mode gain and common mode gain. (13)

Or

- (b) Describe the working of class A and class C power amplifier in details with relevant diagrams. (13)
- (a) With a neat block diagram, explain the operation of following feedback amplifiers.
 - (i) Voltage series feedback amplifier (7)
 - (ii) Current shunt feedback amplifier.

Or

(b) Explain with neat circuit diagram, the working of Hartley oscillator using transistor. Derive an expression for frequency of oscillation. (13)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

 (a) Design an oscillator to operate at a frequency of 10 kHz which gives an extremely pure sine wave output, good frequency stability and highly stabilized amplitude. Discuss the operation of this oscillator as an audio signal generators. (15)

Or

3

(b) Design a voltage divider bias circuit for transistor to establish the quiescent point at V_{CE} = 12 V, I_C =1.5 mA, stability factor $S \le 3$, $\beta = 50$, V_{BE} = 0.7 V, V_{CC} = 22.5 V and R_C = 5.6 kΩ. (15)

(6)

Question Paper Code: 80331

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Third Semester

Electrical and Electronics Engineering EC 6202 — ELECTRONIC DEVICES AND CIRCUITS

(Common to Electronics and Instrumentation Engineering, Instrumentation and Control Engineering, Robotics and Automation Engineering and Second Semester Biomedical Engineering, Medical Electronics)

(Regulations 2013)

Time : Three hours

Answer ALL questions.

Maximum: 100 marks

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State few applications of zener diode.
- 2. A silicon diode has a saturation current $7.5 \,\mu$ A at room temperature 300k. Find the saturation current at 400k.
- 3. Define Early effect.
- 4. Determine the base current for the CE transistor circuit if Ic = 80 mA and $\beta = 170$.
- 5. State Miller's Theorem.
- 6. Draw the hybrid small signal model of CB configuration.
- 7. CMRR of an amplifier is 100 dB, calculate common mode gain, if the differential gain is 1000.
- 8. Define conversion efficiency of power amplifier.
- 9. Differentiate oscillator and amplifier.
- 10. State the Barkhausen criterion for an oscillator.

PART B -- (5 × 13 = 65 marks)

11. (a) Derive the expression of the Space charge or Transition capacitance of PN diode under reverse bias with a neat diagram. (13)

Or

- (b) Explain the operation of a Half wave rectifier and derive its various parameters. (13)
- 12. (a) Draw and explain the working of SCR and its V-I characteristics. (13) Or
 - (b) Describe the operation of UJT as a relaxation oscillator and derive its frequency of oscillation. (13)
- 13. (a) Determine the input impedance, output impedance, voltage gain and current gain of CE amplifier using hybrid model.

Or

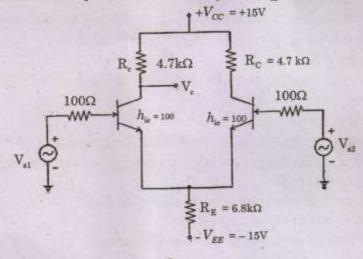
(b) Explain the Common Drain MOSFET amplifier and derive its input impedance, output impedance and voltage gain. (13)

Explain the common mode and differential mode analysis of differential 14. (a) amplifier and derive its CMRR. (13)

Or

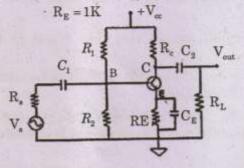
What is Neutralization? Explain any two methods of Neutralization. (13) (b)

Briefly explain Voltage - series feedback amplifier with neat diagram


- 15. (a)
- and derive an expression for input and output resistance. Or
- With neat diagram explain Wien Bridge Oscillator and derive an (b) expression for frequency of oscillation. (13)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a)


(i)

- Design a RC phase shift oscillator to generate 5 kHz sine wave with 20 V peak to peak amplitude. Assume hfe = β = 150, C = 1.5nF, hre = $1.2 \text{ k}\Omega$. (5)
- Evaluate the (1) operating point (2) differential gain (3) common (ii) mode gain (4) CMRR and (5) output voltage if $V_{S1} = 70$ mV peak to peak at 1 kHz and Vs2 = 40 mV peak to peak at 1 kHz of dual input balanced output differential Amplifier, $h_{ie} = 2.8 K\Omega$. (10)

(b) Evaluate the A_i, A_v, R_i, R_o, A_{is}, A_{vs} of a single stage CE amplifier with $R_s = 1k\Omega$, $R_1 = 22k\Omega$, $R_2 = 10 k\Omega$, $R_C = 2k\Omega$, $R_L = 2k\Omega$, $h_{fe} = 50$, hie = $1.1k\Omega$, $h_{oe} = 25 \mu A/V$ and $h_{re} = 2.5*10-4$. (15)

2

80331

(13)

Question Paper Code : 71766

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Third Semester

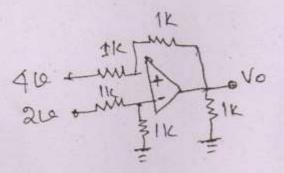
Electrical and Electronics Engineering

EE 6303 — LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

(Common to Electronics and Instrumentation Engineering, Instrumentation and Control Engineering)

(Regulations 2013)

Time : Three hours

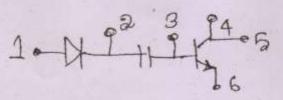

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

1. State the advantages of CMOS circuits.

- 2. What is lithography?
- 3. Draw the circuit diagram of a symmetrical emitter coupled differential amplifier.
- 4. For the circuit diagram shown below determine the output voltage V_0 .

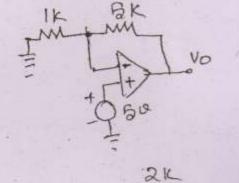

- 5. Draw the circuit diagram of a zero cross detector with input and output waveforms.
- 6. Which is the fastest ADC? State reason.

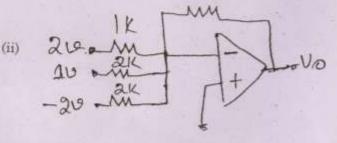
- 7. What is an analog multiplier? Name its applications.
- 8. Draw the circuit diagram of a PLL circuit used as an AM modulator.
- 9. Give one comparison for switching regulator and variable voltage regulator.
- 10. How are frequency of triangular waveform, obtained using ICL 8038 function generator?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

 (a) With neat illustrations explain the various steps involved in the IC fabrication process. (13)

(b) With circuit diagram explain the steps involved in the fabrication of the circuit shown below using IC technology. (13)




12. (a)

(i)

Determine the output voltage for the following circuits.

(6.5)

2

71766

(6.5)

. (5)	(i) With diagram explain the working principle of V/I converter.	(b)		
hniques (8)	(ii) Write a note on stability criterion and compensation tech applicable to opamp circuit.			
(13)	With diagram explain the following applications of op amp.	(a)	13.	
	(i) Clippers and clampers			
	(ii) Triangular waveform generator.			
	Or			
erter. (7)	(i) Explain the working principle of R-2R ladder type D/A conver	(b)		
cut off (6)	 (ii) Design a second, order Butterworth low pass filter with frequency 2KHZ. 			
L-IC to (13)	Briefly explain the functional block diagram of NE 565 PLL operate as a frequency divider.	(a)	14.	
	Or			
. (8)	(i) Explain the functional block diagram of 555 timer IC.	(b)		
1m sec (5)	 (ii) Design a monostable multivibrator with pulse duration of using 555 timer IC. 			
nciple of (13)	With necessary diagram and waveforms explain the working print switched mode power supply.	(a)	15.	
1	Or			
	Write short notes on the following :	(b)		
	(i) LM 380 power amplifier			
(13)	(ii) ICL 8038 function generator.			
	PART C – $(1 \times 15 = 15 \text{ marks})$			
ng three (15)	Sketch the implementation of an instrumentation amplifier using opamps. Explain the principle of operation and its applications.	(a)	16.	
	Or			
22 Ohm (15)	Using 7805 design a current source to deliver a 0.2A current to a 2 10 w load.	(b)		

Question Paper Code: 80368

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016

Third Semester

Electrical and Electronics Engineering

EE 6303 - LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

(Common to Electronics and Instrumentation Engineering, Instrumentation and Control Engineering)

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Write the advantages of ICs over discrete circuits.
- 2. State the limitations of IC technology.
- 3. Write some applications of operational amplifier.
- 4. What is integrator?
- 5. Explain the sample and hold circuit.

diagram.

- 6. Write the difference between active clipper and passive clipper circuit.
- 7. Draw the functional block of 555 timer IC.
- 8. Define PLL.
- 9. What is SMPS?
- 10. What are the applications of fixed voltage regulator?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

(a) (i) Describe about epitaxial growth process. (6)
 (ii) Explain in detail about the Photolithography process with neat

Or

(b) Write a note on masking and etching process in IC fabrication. (13)

(7)

12.	(a)	Discuss in detail about the DC and AC characteristics of op amp.	(13)
		Or	
	(b)	Explain the differential amplifier using op amp.	(13)
13.	(a)	Write a note on logarithmic and antilog amplifier using op amp.	(13)
		Or	
	(b)	Explain the working of SAR type and Flash type A/D converter.	(13)
14.	(a)	With the help of schematic diagram, explain the operation of IC 566 and derive its output frequency.	VCO (13)
		Or	
	(b)	What is PLL? How frequency multiplication is done in PLL?	(13)
15.	(a)	What do you mean by the fixed voltage and variable voltage regulation List its various applications.	lator. (13)
1		Or	
	(b)	Write short notes on:	
		(i) LM380 Power Audio Amplifier.	(6)
		(ii) ICL 8038 Function Generator.	(7)
		PART C — (1 × 15 = 15 marks)	
16.	(a)	What are the new trends in Integrated circuit technologies and exabout its scope for future generation?	plain
		Or	

(b) Write a note on recent fabrication methods of FET for industrial applications.

ANNA UNIVERTISY, CHENNAI -25. OFFICE OF THE CONTROLLER OF EXAMINATIONS

RULES OF THE EXAMINATIONS

A candidate is permitted to use geometric tools, non-programmable calculators and approved tables and data books only during the theory and the practical examinations. No other material/gadget (including cell phone) should be brought inside the examination hall.

A candidate should neither possess/refer any forbidden material in any form nor should seek/obtain assistance in any form from any person/source towards answering the questions during the examinations. He/she should not assist other candidates in any form towards answering the questions during the examinations. The candidate should not reveal his/her identity in any form in the answer scripts. The candidate should not indulge in canvassing either directly or indirectly to award more than deserving marks in the examinations. The candidate should maintain discipline and decorum during the examinations.

Violation of the above rules in any form during the examinations will attract punishment ranging from levying fine to permanently debarring the candidate from continuing his/her studies as given below.

Sl.No.	Nature of Malpractice	Maximum Punishment
	Appeal by the candidate in the answer script to	
1	show mercy by way of awarding more than	
	deserving marks.	
2	The candidate writing his/her name in	
2	the answer script.	
	The candidate writing his/her registration	
3	number/college name in places other than	
	specified in the answer script	
	Any special marking in the answer script by	
	the candidate.	Fine of Rs. 1000/- per subject.
4	The candidate communicating with	The of Rs. 1000/- per subject.
5	neighbouring candidate orally or non-	
	verbally; the candidate causing suspicious	
	movement of his/her body.	
6	Irrelevant writing by the candidate in the	
0	answer script.	
	The candidate marking on the question paper	
7	or writing answer on his/her question paper or	
/	making use of his/her question paper for rough	
	work	
	The candidate possessing cell	
8	phones/programmable calculator(s)/any	Invalidating the examination of the particular subject
	other electronic storage device(s) gadgets	written by the candidate
	The Candidate facilitating the other	which by the candidate
9	candidate(s) to copy from his /her answer	
	script	
	The candidate possessing any incriminating	
	material(s) (whether used or not). For	
10	example:-Written or printed materials, bits of	
10	papers containing written information,	
	writings on scale, calculator, handkerchief,	
	dress, part of the body, Hall Ticket, etc.	
	The candidate possessing cell	Invalidating the examinations of the subject concerned
11	phone(s)/programmable calculator(s)/any	and all the theory and the practical subjects of the
11	other electronic storage device(s) gadgets	current semester registered by the candidate.
	and containing incriminating materials	

	(whether used or not).	Further the candidate is not considered for revaluation
12	The Candidate possessing the question paper of another candidate with additional writing on it.	of answer scripts of the arrears-subjects. If the candidate has registered for arrears – subjects
13	The candidate passing his/her question paper to another candidate with additional writing on it	only, invalidating the examinations of all the arrears – subjects registered by the candidate.
14	The candidate passing incriminating materials brought into the examination hall in any medium (hard/soft) to other candidate(s).	
15	The candidate copying from neighbouring candidate.	
16	The candidate taking out of the examination hall answer booklet(s), used or unused	
17	Appeal by the candidate in the answer script coupled with a promise of any form of consideration.	
18	Candidate destroying evidence relating to an alleged irregularity.	 Invalidating the examinations of the subject concerned and all the theory and the practical subjects of the current semester registered by the candidate. Further the candidate is not considered for revaluation of answer scripts of the arrears-subjects. If the candidate has registered for arrears – subjects only, invalidating the examinations of all the arrears – subjects registered by the candidate. Additional Punishment: if the candidate has not completed the programme, he/she is debarred from continuing his/her studies for one year i.e., for two subsequent semesters. However the student is permitted to appear for the examination in all the arrears-subjects up to the last semester during the debarred period. if the candidate has completed the programme, he/she is prevented from writing the examinations of the arrears-subjects for two subsequent semesters.
19	Vulgar/offensive writings by the candidate in the answer script.	
20	The candidate possessing the answering script of another candidate	Invalidating the examinations of all the theory and practical subjects of the current semester and all the arrears –subjects registered by the candidate.
21	The candidate passing his /her answer script to another candidate	
22	Involved in any one or more of the malpractices of serial no. 8 to 21 for the second or subsequent times.	Invalidating the examinations of all the theory and practical subjects of the current semester and all the arrears –subjects registered by the candidate. Additional Punishment:
23	The candidate substituting an answer book let prepared outside the examination hall for the one already distributed to the candidate	 (i) If the candidate has not completed the programme, he/she is debarred from continuing his/her studies for one year i.e., for two subsequent semesters. However the student is permitted to appear for the examination in all the arrears-subjects up to the last semester during the debarred period. (ii) If the candidate has completed the programme, he/she is prevented from writing the examinations of the arrears-subjects for two subsequent semesters.
24	The candidate indulge in any disruptive conduct including, but not limited to, shouting, assault of invigilator, officials or students using abusive and /or threatening language, destruction of property.	Invalidating the examinations of all the theory and practical subjects of the current semester and all the arrears –subjects registered by the candidate. Additional Punishment: (i) if the candidate has not completed the
25	The candidate harass or engage others to harass on his/her behalf an invigilator, official, witnesses or any other person in relation to an	programme, he/she is debarred from continuing his/her studies for two years i.e., for four subsequent semesters. However the

	irregularity by making telephone calls, visits, mails or by any other means.	student is permitted to appear for the examination in all the arrears-subjects up to
26	Candidate possessing any firearm/weapon inside the examination hall.	 the last semester during the debarred period. (ii) if the candidate has completed the programme, he/she is prevented from writing the examinations of the arrears-subjects for four subsequent semesters.
27	Cases of Impersonation	 (i)Handing over the impersonator to the police with a complaint to take appropriate action against the person involved in the impersonation by the Chief Supt. (ii)If a student of this University is found to impersonate a 'bonafide student', the impersonating student is debarred from continuing his/her studies and writing the examinations permanently. He/she is not eligible for any further admission to any programme of the University. (iii)Debarring the 'bonafide student' for whom the impersonation was done from continuing his/her studies and writing the examinations permanently. He/she is not eligible for any further admission to any programme of the University.

CONTROLLER OF EXAMINATIONS

K.L.N. COLLEGE OF EN	IGINEERING, POTTAPALAYAM 630612
(11 k	m from Madurai City)
DEPARTMENT OF ELECTR	RICAL AND ELECTRONICS ENGINEERING
STUDENTS L	EAVE APPLICATION FORM
	Date:
Name of the Student :	
Roll No. :	Sem / Sec. :
Details of leave availing (b) / applied (a) :	
Date & Day (a) :	No. of. Days (a):
Reason for Leave :	
No. of days, leave & OD, already availed (h	b): Total. No. of. Days (a+b):
% of Attendance as on : is	
Signature of the Student	Signature of Parent / Guardian
-	Name :
	Mobile No. :
Recommended / Not Recommended	
Class Coordinator	HOD/EEE

K.L.N. COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINERING <u>NORMS FOR ATTENDING WORKSHOP / SEMINAR/ TECHNICAL SYMPOSIUM/</u> <u>CONFERENCE / TECHNICAL CONTEST etc.</u>

Students are regularly encouraged to attend skill development programmes such as workshop / seminar / Technical Symposium / Conference / Technical Contest etc., outside the college. This is to facilitate to improve their technical skills and competency. However, frequently attending such events, will reduce their academic performance, as they are not consistent in attending regular Theory / Practical classes. Also, it was reported that, few students were absent for class tests /CIT's and regular practical classes, in order to attend such skill development programmes. Hence, the following norms are framed, in order to balance the academic performance and facilitate the students to attend skill development programmes.

- 1. A student will be permitted, to attend skill development programme, not more than three events per semester (6 days OD- maximum).
- Academic performance of the students will be considered, before permitting a student to attend skill development programmes (Upto 3 arrears, passed 4 subjects in Class test / CIT's – only will be permitted).
- 3. Attendance of the student should not be less than 90% as on date.
- 4. No history of disciplinary action taken on the students.
- 5. Students will not be permitted during class test / Centralized Internal Test to attend Skill development programme. However students with high academic performance will be permitted, considering the nature of the event during class tests.
- Students will be permitted to attend such events, only in the higher learning Institutions. (IITs, IISC, NITs, Anna University, MIT, NAAC accredited (A grade), Deemed Universities, NBA accredited, Government & Government Aided Institutions and Self financing Engineering Colleges).
- 7. Students are instructed to refer the academic calendar of the College, regularly so as to know the Internal test schedule and other events.
- Students registering any events, without following above norms and not obtaining prior permission, will not be granted ON DUTY and no RETEST will be conducted. Necessary action will be taken against defaulters.
- 9. ON DUTY form is revised, accordingly, in order to incorporate all the above details.
- 10. Class co-ordinators / Academic Co-ordinators are instructed to recommend for OD, as per the above norms.

HOD/EEE

Cc to Principal for information Cc to Staff & Students notice board, Cc to file.

K.L.N.COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Format No.: F127

ON DUTY REQUISITION FORM

STUDENTS – TO ATTEND SKILL DEVELOPMENT PROGRAMMES

(Workshop / Seminar / Symposium etc.)

	Date:
То,	
The Principal,	
KLNCE.	
Pottapalayam.	
Respected Sir,	
Sub.: Request for OD to attend	
(Workshop / Conference / Value added course / Syn	nposium / Project Contest / Seminar / Certificate Course /
In-plant training / Internship)	
As, I am going to attend	conducted by
	(Venue & Place)
from to Please p	ermit me to attend the programme and also grant me O.D.

for these days.

S. No	Roll No.	Name & Degree, Semester / Section)	No. of Programmes already attended & Days OD availed	No. of Arrears in AU Exam	No. of subjects failed in Class Test	No. of Subjects failed in CIT's	ATT % As on	Sign

Discipline / misbehavior, reported if any : Clash with Internal test if any :

Recommended by								
Class co-ordinator	IOD							
	OD Permitted	OD Approved						

A BRIEF HISTORY OF THE COLLEGE

K.L.N. College of Engineering is the first self-financing Co-educational Engineering College in Madurai, started in 1994 by Munificence of Philanthropist and well wishers in Sourashtra Community which is a linguistic minority in Tamilnadu. This college is sponsored by the committee of eminent industrialists and academicians led by enthusiastic, educationalist and industrialist (Late) Thiru K.L.N. Krishnan. This college has the approval of All India Council for Technical Education, New Delhi and is affiliated to Anna University, Chennai.

Thiru. K.L.N. Krishnan, Founder President of this Engineering College has rendered Yeoman service to Sourashtra Arts & Science College and Sourashtra Girls Higher Secondary School, Madurai for the past several years. He also promited a Polytechnic under the name of K.L. Nagaswamy Memorial Polytechnic College in Viraganur, Madurai in 1983. This Engineering College, functioned in the premises of the above polytechnic during the academic years 1994-95 & 1995-96 was shifted to its own premises in the year 1996.

(Late) Thiru K.L.N. Krishnan is the Founder President, and the college is now under the management of Dr. K.N.K. Ganesh as Secretary & Correspondent and other executive committee members.

Campus :

This college is situated on the South Eastern outskirts of Madurai, 11th Km on Madurai – Nedungulam Road. It is built in an area of 53.8 acres. The Campus has multistoreyed buildings consisting of well provided class rooms, drawing halls, seminar halls, conference hall, library, Air-Conditioned Computer centres, staff rooms and student rest rooms. The infrastructure also consists of five double storeyed laboratory buildings and three single storeyed workshops and Machine shop, and an automobile workshop.

The Administrative block (2 storeyed) of 1,185 sq. metre with office in the ground floor, I.T. laboratory in the first floor & class rooms in the second floor has been constructed on the eastern side.

A two storeyed block of 1,185 sq. metre consisting class room has been constructed on the southern side of the administrative block.

A two storeyed block of 1,185 sq. metre with EIE laboratory in the ground floor, DSP laboratory in the first floor & class rooms in the second floor has been constructed on the western side of the administrative block.

A two storeyed block of 2,122 sq. metre with spacious library, video library & Electronic resource section in the ground floor, class rooms in the first floor & CSE laboratory in the second floor has been constructed near the administrative block.

A single storeyed block of 1,193 sq. metre with S.M. laboratory in the ground floor CAD, CAM laboratories in the

first floor & class rooms in the second floor has been constructed on the north western side of the administrative block.

Three Mechanical sheds (occupied by three Mech. Engg. Laboratory) of 2460 sq. metre have been constructed on the northern side of the mechanical block. An automobile work shop of 2304 sq. metre has been constructed on the north western side of the administrative block.

An Indoor stadium cum Auditorium of 2,221 sq. metre has been constructed on the northern side of the administrative block.

A separate double storeyed post-Graduate block of 4,020 square metre for M.B.A. and M.C.A. departments has been constructed on the South Western side of the administrative Block.

A single storeyed block of two canteens with 2,485 square metre in the ground floor and ladies rest room in the first floor has been contructed on the south western side of the Administrative Block.

A single storeyed block of 1,289 square metre for Electrical & Electronics Engg., Laboratories & class rooms in the ground floor and Electronics & Communication Laboratory and Class rooms in the first floor has been constructed on the western side of the Administrative Block.

A two-storeyed block with an area of 2,956 sq. metre has been constructed

as an extension to Block III Opposite the U.G. library Block. This block comprised Physics lab, Chemistry lab and EIE Lab. D.S.P. Lab & Class rooms.

A two-storeyed block with an area of 2076 squre metre for the use of EEE Dept. in the ground floor & ECE Dept. in the first & 2nd floors is now under construction as an extension to the existing EEE & ECE block on the western side of the administrative block.

A two storeyed block with an area of 2,977 sq. metre for the use of Mechanical & Automobile depts. is now under construction, as an extension to the existing Mechanical block on the North-Western side of the administrative block.

A separate building with ground floor of area of 170 sq. metre for the installation of Generator on the South-estern side (Opposite to the Vinayagar temple) of the administrative block is under construction & (nearing completion)

In order to facilitate the easy accessibility for the students, in all, 950 numbers of computers have been installed so far. This sounds the management's conviction in providing essential infrastructure for the learning purpose in our college.

An overhead Tank of 20,000 Litre Capacity at a height of 40 feet has been constructed at a cost of Rs.4 lakhs, donated by Rotary international, Rotary District-1240, Rotary club of LEIGH-ON-SEA. Treated drinking water plant at a cost of Rs.2 lakhs has been installed near the overhead tank.

Well-furnished Men's Hostel, Mess block and canteen block are also inside the campus. The college is a quiet retreat, ideal for concentrated study, away from distractions and disturbances of a large city.

A single storeyed block of 1,330 square metre with a spacious dining hall in the ground floor and 13 rooms in the first floor for men students has been constructed on the northern side of the administrative block and is already in use. A two storeyed hostel block of 2,034 square metre adjacent to the existing hostel for men students has been constructed.

Total expenditure incurred so far towards the cost of equipments & buildings & other assets is about Rs.22.50 crores.

A VINAYAGAR Temple on the eastern side of the administrative Block has been constructed Eight class rooms for I year B.E. / B.Tech 2 class room for M.E. (P.S.) students, and two staff rooms have been constructed in the ECE/EEE block.

A Ladies Hostel of 1460 sq.m. which can accommodate about 150 students in under construction within the campus.

SALIENT FEATURES OF THE DEPARTMENT

1. GENERAL

- Started offering B.E. in Electrical and Electronics Engineering in the year 1994 with an intake of 40 (No.-732-50-8/RC/94, dated 11th August 1994, AICTE) with the latest intake of 120 in 2011 (F.No.Southern/1-400215781/2011/EOA, dated 01.09.2011, AICTE).
- Started offering M.E. in Power Systems Engineering in the year 2005 with an intake of 20 and increased intake to 24 in 2012 (F.No.Southern/1-687512981/2012/EOA, dated 10.05.2012, AICTE).
- Accredited in March 2004 (First time F.No.NBA/ACCR-242/2003, dated 24/03/04) and Re-accredited (Second time F.No.NBA/ACCR-242/2003, dated July 19, 2008) by National Board Accreditation, New Delhi. Re-accredited (Third time For 2 years w.e.f. 28-08-2012) by National Board Accreditation, New Delhi. Re-accredited (Fourth time For 3 years w.e.f. July 2016, upto 30.06.2019, F.No. 33-01/20100-NBA, dated 04.02.2017) by National Board Accreditation, New Delhi.
- Recognized Research Centre No.4490408, Approved by Anna University, Chennai with effect from December 2012, offering guidance for M.S & Ph.D.(Full time/Part time).
- Both UG and PG programs are permanently affiliated to Anna University, Chennai with effect from December 2012.
- MODROB fund of Rs.5 lakhs was allotted for the year 2011-2012 for the Power Electronics laboratory (No.8024/RIFD/MOD-131(pvt)/Policy-III/2011-2012, dated 06.03.2012).

2. INFRASTRUCTURE

- Electrical machines laboratory, Control, Measurement and Instrumentation laboratory, Power Electronics laboratory, Electric circuits and Electronic devices laboratory, Research and Development laboratory and Power System Simulation Laboratory are equipped with machineries, components, signal generating, power supply measuring, recording instruments and computer systems costing Rs.2 crores. The total built up area of laboratories is 1208.21 sq.m.
- Latest softwares on Power system analysis, Power system stability, Power world simulator and Power electronics are available to study, solve, design and simulate research on Power system and Power Electronics problems to experience the real time results.
- All the class rooms are equipped with computer systems, LCD and OHP to promote the Teaching-Learning process more effectively.
- Separate library facility for EEE students with more than two thousand books on core subjects and hard copies of IEEE Journals and magazines from 1999 are available for reference. Staff and students can access the softcopy of Journals, proceedings published by IEEE, Elsevier, ASME, Springer, Mc Graw Hill.
- All laboratories are provided with sufficient computing facilities, printing facility with internet connection to simulate laboratory experiments.

3. STAFF

- Teams of well qualified, and experienced 31 faculties with cadre ratio as per AICTE, are guiding the students to attain the best educational objectives.
- Excellent research environment promotes the staff and students to participate, present and publish their research works in the National/International Journals and National/International conferences.
- Facility and experienced faculty available for guiding Ph.D. scholars.
- Staff development Programme / Faculty development programme / Workshop/ Seminar are organized regularly to share the knowledge of our experienced faculty with parent institution and other colleges staff and students and Industrial persons.

4. RESEARCH AND DEVELOPMENT

• The Research and Development section is doing research on Industrial Power Harmonics and mitigation and interact with industries in measuring, recording, analyzing and designing of filters for reducing harmonics with the help of Power Quality analyzer, as per IEEE standard.

5. STUDENTS

- Students secured 95 University Ranks in UG and 15 University Ranks in PG from 1998 to 2015 with Gold medal in 2000 (UG EEE) and in 2011 (PG Power Systems Engineering). Sweety Jain of 2009 batch student secured 2nd rank in Anna University Examination in 2009 among 8500 students who completed degree and out of 240 Engineering colleges all over Tamil Nadu.
- IEEE student's chapter which was started in the year 1999, continuously conducting number of student technical programme. Guest lecturers from industries have been arranged periodically to promote Industry-Institute Interaction and to bridge the gap between curriculum and latest trend in industry.
- To promote innovation, latest trends in industry and employability skills, student's professional activities are conducted every year in the name of symposium and conferences.
- Workshop/Seminar is regularly conducted for students to meet out the curriculum objectives.
- Inplant trainings are arranged for second and third year students to have hands on training with industry. Industrial visits are arranged every semester to know about the various process taking places in industry.
- Placement oriented training programme were conducted every semester right from the first year to develop soft skills, attitude, aptitude, self confidence, communication skills, interview skills etc, so as to face the campus placement programme organized by the college. Professional Trainers from software companies, Bangalore, Chennai are being invited for such training programme.

K.L.N. COLLEGE OF ENGINEERING, POTTAPALAYAM – 630 612 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING <u>FACULTY LIST</u>

S.No.	Name of the Faculty	Designation	Mobile No.	Email id
1.	Dr.S.M.Kannan	Professor & Head	9442035859	smkeeeklnce@gmail.com
2.	Dr.S.Venkatesan	Professor	9790672188	vensenn@yahoo.com
3.	Dr.K.Gnanambal	Professor	-	gnans_balu@rediffmail.com
4.	Dr. S.Parthasarathy	Professor	9443402901	sarathy_sps@yahoo.co.in
5.	Dr. S.Venkatanarayanan	Professor	9677320576	venjey@yahoo.co.uk
6.	A.Marimuthu	Associate Professor	9865002712	marimuthu_a@yahoo.com
7.	P.Loganthurai	Associate Professor	9952112115	loganthurai@yahoo.co.in
8.	M.Jegadeesan	Associate Professor	9524499063	m_jegadeesan07@rocketmail.com
9.	Dr.A.S.S.Murugan	Associate Professor	9344661182	assm17174@yahoo.co.in
10.	Dr. C.Vimala Rani	Associate Professor	-	jaysanjayvim@gmail.com
11.	Dr.J.Sangeetha	Associate Professor	-	geetha maniraj@yahoo.com
12.	S.Manoharan	AP(Sr.Gr.)	9715585524	sharpmano@yahoo.com
13.	M.Ganesh Kumari	AP(Sr.Gr.)	-	gnshkumari@gmail.com
14.	M.Jeyamurugan	AP(Sr.Gr.)	9600637578	jeyam3182@gmail.com
15.	Dr.A.P.S.Ramalakshmi	Assistant Professor	-	ramalakshmi.aps@gmail.com
16.	Dr.M.Maha Lakshmi	Assistant Professor	-	mmahalakshmi36@gmail.com
17.	K.R.Jeyavelumani	Assistant Professor	-	krjeya35@gmail.com
18.	M.Balamurugan	Assistant Professor	9677564275	murugan.bala10@gmail.com
19.	T.Gopu	Assistant Professor	9487059842	gopu70@gmail.com
20.	R.Jeyapandiprathap	Assistant Professor	9788671119	jprathap03@gmail.com
21.	S.Rajalingam	Assistant Professor	9790248476	rajalingamrcet@gmail.com
22.	N.Vimal Radha Vignesh	Assistant Professor	9894965475	nvimalvignesh@gmail.com
23.	A.Manoj	Assistant Professor	9487526428	manojhails@gmail.com
24.	R.Jeyarohini	Assistant Professor	-	rjreee2008@gmail.com
25.	R.C.Hemesh	Assistant Professor	9443675916	kirthihemesh@gmail.com
26.	S.P.Rajaram	Assistant Professor	9786614484	ramraja798@gmail.com
27.	E.Jeyasri	Assistant Professor	-	jeyasrieswaran@gmail.com
28.	V.Sindhu	Assistant Professor	-	savisindhu@yahoo.co.in
29.	R.Divya	Assistant Professor	-	divyaraajagopal@gmail.com
30.	R.Sridevi	Assistant Professor	-	sridevirs87@gmail.com
31.	M. Bharani lakshmi	Assistant Professor	-	bharanilakshmi.m@gmail.com

PLACEMENT ACTIVITY – REMINDER

- 1. In the month of October every first year students must fill forms online in TATA CONSULTANCY SERVICES (TCS) campus recruitment using **<u>nextsteptcs.com</u>** website and must submit the following documents in the department.
 - a. SSLC and HSC mark sheet photo copy at least 5.
 - b. Latest passport size Photo at least 5.
 - c. Current address proof with parent contact cell numbers.
 - d. Create your own two E-mail id using Gmail.
 - e. Resume with Scanned copy of passport size Photo.
 - f. CT number registered in the TCS website.
- 2. Every semester end update CGPA in your resume and TCS profile.
- 3. An Engineering student from Electrical and Electronics Engineering should complete the following courses in order to enhance their software skills. This will be most helpful during their successful completion in Curriculum during 4th Semester and in the software company campus recruitment.
 - a. Should complete **C Programming** before joining 2nd Semester.
 - b. Should complete C++ **Programming** before joining **3rd Semester**.
 - c. Should complete **JAVA Programming** before joining **4**th **Semester**. (for the successful completion of object oriented Programming theory paper and laboratory during 4th Semester)
- 4. An Engineering student from Electrical and Electronics Engineering should complete the Micro Processor, Micro Controller and Embedded Systems courses before joining 5th Semester in order to enhance their Hardware skills. This will be most helpful during their successful completion in Curriculum from 5th to 6th Semester and in the Core company campus recruitment. (for the successful completion of Micro Processor and Micro Controller theory as well as laboratory during 5th Semester and Embedded Systems during 6th Semester)
- 5. From 6th Semester Summer vacation onwards all should prepare for GATE Examination because all Engineering students from Electrical and Electronics Engineering should appear GATE Examination in order to settle in their life by pursuing higher education in the reputed colleges like IIT, NIT and Anna University or else to join as a Graduate Engineer trainee in a public sector companies like IOC, BHEL, PGCI etc.,
- 6. Before joining 7th Semester all should get any international certification programme course like OCJP, CCNA, etc., and upload the certification details in TCS campus commune website. This will be most helpful during the TCS campus and other MNC company recruitment.

A attivity	Semester								
Activity	1	2	3	4	5	6	7	8	
TCS Online form Filling in <u>nextsteptcs.com</u>	In the month of October								
Documents to be submitted in the EEE Department/ Placement Coordinator	 a. SSLC and HSC mark sheet photo copy at least 5. b. Latest passport size Photo at least 5. c. Current address proof with parent contact cell numbers. d. Create your own two E-mail id using Gmail. e. Resume with Scanned copy of passport size Photo. f. CT number registered in the TCS website. 								
Updating CGPA in resume and TCS online profile	1	1	1	1	~	1	1	~	
C Programming	✓	1							
C++ Programming		1							
JAVA Programming			1						
Micro Processor & Micro Controller				~					
Embedded Systems					✓				
GATE / UPSC/ TNPSC Preparation			~	~	~	~	~		
International Certification – OCJP / CCNA						~	~		

K.L.N. COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

All India Installed Capacity (in MW) of Power Stations

This is a list of states and territories of India by installed capacity of power utilities with electricity generation mode break-up

as on **31 January 2017** with figures in Megawatts.

INSTALLED CAPACITY (IN MW) OF POWER UTILITIES IN THE STATES/UTS LOCATED IN SOUTHERN REGION

INCLUDING ALLOCATED SHARES IN JOINT & CENTRAL SECTOR UTILITIES

(As on 31.01.2017)

		Modewise breakup							
State	Ownership / Sector	Thermal Hydro RES						Grand	
		Coal	Gas	Diesel	Total	Nuclear	(Renewable)	(MNRE)	Total
	State	3085.91	235.40	0.00	3321.31	0.00	1808.87	89.50	5219.68
A Jlana	Private	3650.00	3074.11	16.97	6741.08	0.00	0.00	3660.99	10402.07
Andhra Pradesh	Central	1540.30	0.00	0.00	1540.30	127.16	0.00	0.00	1667.46
Tradesh	Sub-Total	8276.21	3309.51	16.97	11602.69	127.16	1808.87	3750.49	17289.22
	State	5406.59	0.00	0.00	5406.59	0.00	2245.66	0.00	7652.25
	Private	270.00	1570.89	19.83	1860.72	0.00	0.00	1230.21	3090.93
Telangana	Central	1799.88	0.00	0.00	1799.88	148.62	0.00	0.00	1948.50
	Sub-Total	7476.47	1570.89	19.83	9067.19	148.62	2245.66	1230.21	12691.68
	State	4220.00	0.00	127.92	4347.92	0.00	3599.80	155.33	8103.05
Karnataka	Private	2060.00	0.00	25.20	2085.20	0.00	0.00	5949.21	8034.41
	Central	2028.46	0.00	0.00	2028.46	475.86	0.00	0.00	2504.32
	Sub-Total	8308.46	0.00	153.12	8461.58	475.86	3599.80	6104.54	18641.78
	State	0.00	0.00	159.96	159.96	0.00	1881.50	145.02	2186.48
	Private	0.00	174.00	0.00	174.00	0.00	0.00	119.36	293.36
Kerala	Central	1073.69	359.58	0.00	1433.27	228.60	0.00	0.00	1661.87
	Sub-Total	1073.69	533.58	159.96	1767.23	228.60	1881.50	264.38	4141.71
	State	4660.00	524.08	0.00	5184.08	0.00	2203.20	122.70	7509.98
	Private	2950.00	503.10	411.70	3864.80	0.00	0.00	10249.07	14113.87
Tamil Nadu	Central	4255.10	0.00	0.00	4255.10	986.50	0.00	0.00	5241.60
	Sub-Total	11865.10	1027.18	411.70	13303.98	986.50	2203.20	10371.77	26865.45
	G ()	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	State	0.00	0.00	0.00	0.00	0.00	0.00		0.00
NLC	Private	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Central Sub-Total	100.17 100.17	0.00 0.00	0.00	100.17 100.17	0.00	0.00 0.00	0.00 0.00	100.17 100.17
	Sub-10tal	100.17	0.00	0.00	100.17	0.00	0.00	0.00	100.17
	State	0.00	32.50	0.00	32.50	0.00	0.00	0.00	32.50
	Private	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
Puducherry	Central	249.32	0.00	0.00	249.32	52.78	0.00	0.00	302.10
	Sub-Total	249.32	32.50	0.00	249.32	52.78	0.00	0.00	334.63
Central - U	Jnallocated	1643.08	0.00	0.00	1643.08	300.48	0.00	0.00	1943.56
	State	17372.50	791.98	287.88	18452.36	0.00	11739.03	512.55	30703.94
Total	Private	8930.00	5322.10	473.70	14725.80	0.00	0.00	21208.87	35934.67
(Southern	Central	12690.00	359.58	0.00	13049.58	2320.00	0.00	0.00	15369.58
Region)	Grand Total	38992.50	6473.66	761.58	46227.74	2320.00	11739.03	21721.42	82008.19

*Renewable Energy Sources (RES) includes small hydro projects, wind, solar, tidal, biomass and urban & industrial waste power.

GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT AND ENTERPRENEURSHIP DIRECTORATE GENERAL OF TRAINING

ADVANCED TRAINING INSTITUTE

(AN ISO 29990 : CERTIFIED) Guindy, CHENNAI, Tamilnadu

Phone: 044-22501211/0252 Fax: 044-22501460, Email: atichn@vsnl.com, atichn@yahoo.com, Url: www.atichennai.org.in

ATI Chennai : Regular Course Training Schedule Advanced Vocational Training Scheme (AVTS) - Short Term Programme <u>Annual Training calendar 2017 – 2018</u> (Short Term Skill Training Programme)

	Course	Course Title	Duration		Date			
	Code		(Week)	From	То			
GROUP:1	ELECTRICAL CONTROL MAINTENANCE							
	01.01	Protective Relays, Circuit Breakers, & Switch Gear	01	03-04-2017	07-04-2017			
		Protection		15-05-2017	19-05-2017			
				05-06-2017	09-06-2017			
				10-07-2017	14-07-2017			
				21-08-2017	25-08-2017			
				09-10-2017	13-10-2017			
				13-11-2017	17-11-2017			
				18-12-2017	22-12-2017			
				29-01-2018	02-02-2018			
				19-02-2017	23-02-2017			
	01.02	Operation and Maint. Of Power Transformers	01	17-04-2017	21-04-2017			
				12-06-2017	16-06-2017			
				17-07-2017	21-07-2017			
				04-09-2017	08-09-2017			
				23-10-2017	27-10-2017			
				20-11-2017	24-11-2017			
				01-01-2018	05-01-2018			
				05-02-2018	09-02-2018			
				26-02-2017	02-03-2017			
				19-03-2017	23-03-2017			
	01.03	Operation & Control of Industrial AC / DC Motors	01	24-04-2017	28-04-2017			
				22-05-2017	26-05-2017			
				19-06-2017	23-06-2017			
				24-07-2017	28-07-2017			
				28-08-2017	01-09-2017			
				18-09-2017	22-09-2017			
				31-10-2017	03-11-2017			
				04-12-2017	08-12-2017			
				08-01-2018	12-01-2018			
				05-03-2018	09-03-2018			
	01.04	Electrical Safety at Work Place and First Aid	01	01-05-2017	05-05-2017			
				29-05-2017	02-06-2017			
				03-07-2017	07-07-2017			
				07-08-2017	11-08-2017			
				11-09-2017	15-09-2017			
				06-11-2017	10-11-2017			
				04-12-2017	08-12-2017			
				15-01-2018	19-01-2018			
				12-02-2018	16-02-2018			
				12-03-2018	16-03-2018			

Phone : 044-22501211/0252 Fax : 044-22501460

Email : atichn@vsnl.com, atichn@yahoo.com

Url : www.atichennai.org.in

GOVERNMENT OF INDIA

MINISTRY OF SKILL DEVELOPMENT AND ENTERPRENEURSHIP DIRECTORATE GENERAL OF TRAINING

ADVANCED TRAINING INSTITUTE

(AN ISO 29990 : CERTIFIED) Guindy, CHENNAI, Tamilnadu

ATI Chennai : Regular Course Training Schedule Advanced Vocational Training Scheme (AVTS) - Short Term Programme <u>Annual Training calendar 2017 – 2018</u> (Short Term Skill Training Programme)

GROUP:1	ELECTRONIC CONTROL	MAINT	ENANCE	
Course Code	Course Title	Duration		Date
		(Week)	From	То
02.01	Power Electronics and its Industrial Applications	01	03-04-2017	07-04-2017
			05-06-2017	09-06-2017
			02-10-2017	06-10-2017
			04-12-2017	08-12-2017
			19-02-2018	23-02-2018
02.02	8051 Programming & Applications	01	10-04-2017	14-04-2017
			12-06-2017	16-06-2017
			31-07-2017	04-08-2017
			21-08-2017	25-08-2017
			09-10-2017	13-10-2017
			11-12-2017	15-12-2017
			26-02-2018	02-03-2018
02.03	PIC Micro Controller Programming & Applications	01	24-07-2017	28-07-2017
			25-09-2017	29-09-2017
02.04	Siemens S7-400 PLC Step-7 (Level-1)	01	17-04-2017	21-04-2017
			19-06-2017	23-06-2017
			07-08-2017	11-08-2017
			16-10-2017	20-10-2017
			18-12-2017	22-12-2017
			04-09-2017	08-09-2017
			05-03-2018	09-03-2018
02.05	Computer Hardware maintenance & Net Working	01	24-04-2017	28-04-2017
			26-06-2017	30-06-2017
			11-09-2017	15-09-2017
			23-10-2017	27-10-2017
			25-12-2017	29-12-2017
			05-02-2018	09-02-2018
			12-03-2018	16-03-2018
02.06	Siemens S7-400 PLC Programming (TIA PORTAL) (Level-1)	01	01-05-2017	05-05-2017
			29-05-2017	02-06-2017
			03-07-2017	07-07-2017
			18-09-2017	22-09-2017
			30-10-2017	03-11-2017
			01-01-2018	05-01-2018
			19-03-2018	23-03-2018
02.07	Siemens PLC-S7-1200 & Drive for Position Control	01	08-05-2017	12-05-2017
	Applications		10-07-2017	14-07-2017
			06-11-2017	10-11-2017
			08-01-2018	12-01-2018

List of PSUs through GATE Exam

Name of PSU	Eligible Branches	Name of PSU	Eligible Branches	Name of PSU	Eligible Branches
ओख्नजीसी DIGC ONGC Ltd.	XE, GG	MDL	ME, EE	NLC	ME, EE, EC, IN, MN, CE
NHPC Limited	EE	PSPCL Ltd	ME, EE, EC, IN, CE, CS	ৰালকা 🙆 NALCO A decement - Strategy NALCO	ME, EE, EC, IN, MT, CE, MN, CS, CH
BPCL Limited	ME, EE, CH, IN, CE	OPGC Ltd	ME, EE, CE, C & I	R ITES	CE, ME
CEL	EC, ME, EE, XE	IRCON International Ltd	EC, EE, IN	NPCCL	CE
Coal India Ltd.	ME, EE, MN, GG	BNPM	ME, EE, EC, CH	MECL	ME, CY, GG
POWERGRID	EE, CE, CS	AAI	EC, EE	NBCC Ltd.	CE
Indian Oil	CH, CE, CS, EE, EC, GG, IN, ME, MT, MN	BBNL	EC, EE, CS	PAPCL	EE, EC, ME, IN, CS
THDC India Ltd	ME, EE, CE	NFL	EE, CS, CH, IN, XE		
HPCL	ME, EE, CE, IN, CH, EC	GSECL	EE, ME, MT, C & I		
NTPC Limited	ME, EC, EE, IN	GAIL	ME, EE, IN, CH		

Lists of TOP	10 software	companies to	offer j	obs in India

S.	Name of the	About the company	Head	Revenue	No. of	Website
No.	Company		quarters	nevenue	Employees	TT COSICC
1.	Tata Consultancy Services	TCS was established in 1968 and is spread across 47 countries.	Mumbai, India	US\$ 13.44 billion	300,464	www.tcs.com
2.	Cognizant Technology Solutions	CTS was founded in year 1994 by Srilankan American Kumar Mahadeva.	Teaneck, New Jersey, United States	US\$ 8.84 billion	178,000	www.cognizant.c om
3.	Infosys	Infosys was founded in year 1981.	Bangalore, Karnataka	US\$ 8.4 billion	160,405	www.infosys.com
4.	Wipro	Azim Premji is the Chairman & TK Kurien is the CEO of Wipro.	Mumbai, India	US\$7.3 billion	146,053	www.wipro.com
5.	Tech Mahindra	Tech Mahindra was founded in year 1986	Mumbai	\$4.09 billion	89,500	www.techmahindr a.com
6.	HCL Technologies	HCL was founded by Shiv Nadar in year 1991.	Noida, Uttar Pradesh	US\$335 million	90,190	www.hcltech.com
7.	iGate	iGate was earlier known as Patni Computer Systems and was founded by Narendra Patni and his wife.	Bridgewater, New Jersey, U.S	US\$ 1.15 billion	31,000 +	www.igate.com
8.	Mphasis	MPhasis was founded by Jaithirth Rao in year 2000	Bangalore, India	US\$1.0 billion	45,426 +	www.MphasiS.co m
9.	Larsen &Toubro Infotech	L & T Infotech was founded in year 1997	Mumbai	US\$ 650 million	16,000+	www.lntinfotech.c om
10.	Oracle Financial Services Software Limited	Oracle Financial Services Software Limited was earlier know as i-Flex Solutions Limited. It is spread across 130 countries around the globe and provides the IT solutions to the financial companies.	Mumbai, India	US\$610 million	9,682	www.oracle.com

Lists of TOP 10 core companies to offer Electrical jobs

1 | Bharat Heavy Electricals Ltd.

Corporate office – New Delhi, India | Establishment – 1964 | Business – Electrical equipments | Website – www.bhel.com |

Bharat Heavy Electricals Ltd established in the year 1964 is a leading power plant equipment manufacturer and has expertise in engineering, manufacture, construction, testing, designing and servicing of various products of the core sectors such as defense, power, industries etc. BHEL is among the top electrical companies in India and which has total 16 manufacturing divisions and four regional offices. It is currently operating more than 150 project sites across India and abroad.

2 | Alstom

Corporate office – Levallois-Perret, France | **Establishment** – 1928 | **Business** – Power generation and transmission | **Website** – *www.alstom.com* |

Alstom a multinational corporation is one of the best electrical companies in India and world, operating in hydroelectric power transportation and generation and it is active in many core industry sector. Company has a workforce of 9000+ employees in India and over 85000+ worldwide.

3 | ABB

Corporate office – Zürich, Switzerland | **Establishment** – 1988 | **Business** – Electrical equipments | **Website** – *www.abb.com* |

ABB holds interests in robotics and mainly in the automation and power areas. ABB is active in the field of electricity grids manufacturing and other technologies in the field of automation and power. ABB is one of the few giant electrical player at global level and among the largest engineering company in the world.

4| Siemens

Corporate office – Erlangen, Germany | Establishment – 1847 |

Business - Renewable energy, Power generation & transmission| Website - www.energy.siemens.com |

Siemens a German conglomerate is rated one the finest electrical company in India. Company's product line includes generators, steam turbines, compressors, high-voltage switching products and many more. Siemens employees more than 86000 people worldwide and it is a leading supplier of energy related products worldwide.

5 | Crompton Greaves

Corporate office – Mumbai, Maharashtra | **Establishment** – 1878 | **Business** – Electrical | **Website** – *www.cgglobal.com* |

Crompton Greaves is a part of Avantha Group which is headquartered in Mumbai. CGL deals in manufacturing, marketing and designing of power transmission and generation related products. CGL has manufacturing units in Canada, France, Hungary, UK, US, Indonesia, Ireland, India and Belgium.

6 |Bajaj Electricals Ltd.

Corporate office – Mumbai, Mharashtra | Establishment – 1938 | Business – Electrical Appliances | Website – www.bajajelectricals.com |

Bajaj Electricals is a leader in the field of electrical equipment and headquartered in Mumbai. It is one of the top 5 electrical companies in India having 19 branch offices across India. Bajaj Electricals provides complete range of consumer durable such as fan, electrical appliances, lighting which includes tubes, lamps etc.

7 | Eason Reyrolle

Corporate office – Bangalore, Karnataka | Establishment – 1986 | Business – Electric Equipments & Industrial Consumables | Website – www.easunreyrolle.com |

Established in 1980 Easun Reyrolle is a Power Management Products, Transmission, Distribution & Industrial Application, Systems, Solutions and Services provider having significant presence in global market as reputed electrical products manufacturer.

8 | Schneider Electrical

Corporate office – Rueil Malmaison, France | Establishment – 1981 | Business – Electric Equipment | Website – www.schneider-electric.co.in |

Schneider Electric a French company established in the year 2000 is among the top electrical companies in India which is involved in energy management. Company has a workforce of more than 17000 employees and has 31 global manufacturing Plants.

9| Wipro Lighting

Corporate office – Pune, Maharashtra | Establishment – |

Business - Lamps, Luminaires and Accessories | Website - www.wiprolighting.com |

Wipro lightings a part of Wipro group and a leading electrical company in India producing Lamps, luminaries and accessories. Company's product portfolio comprises of high end lighting control and architectural dimming system, high intensity discharge lamp Luminaries, brightness management lighting products etc.

10| Kelvin Electrical

 $\textbf{Corporate office-Al-Ain, U.A.E} \mid \textbf{Establishment} - 2005 \mid$

Business – | Website – www.kelvin-electrical.com |

Kelvin Electrical LLC founded in 2005 is based in United Arab Emirates (UAE). Kelvin Electrical deals in Cable Management Systems, Interior, Architectural, Exterior and Special lighting, Cable Support Systems, Raised Floor, Wiring Accessories etc.

K.L.N. COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING Lists of core companies to offer Electrical jobs in India

Types of Electrical Core Companies

- 1. Electrical motors and Generators
- 2. Consultancy (Electrical Engineering)
- 3. Electrical appliances
- 4. Electrical components companies
- 5. Lighting & luminaries
- 6. Power Generation
- 7. Electric wires & Cables
- 8. Electrical exporters
- 9. Measurements & Instrumentation
- 10. Power Distribution
- 11. Transformers
- 12. Green Energy Companies in India
- 13. Internationally renowned MNC'S
- 14. Top 20 core companies in India to offer electrical jobs
- 15. Exclusive Government jobs for Electrical Engineers

Electrical motors and Generators

- 1. Ajay Engineers http://www.ajayengineers.com
- 2. All India Electric Motor Manufacturers' Association http://www.aiemma.com/
- 3. Aqua Brand Submersible Sewage Pump http://www.aquapumps.com
- 4. Compact http://www.compactlighting.net
- 5. Crown Electric Company http://www.crown-gear.com
- 6. Lawkim http://lawkimindia.com/
- 7. MMC Electric Company http://www.dynafluxindia.com
- 8. MS Enterprises and Trimega Power Corporation http://www.msein.com
- 9. National Electrical Industries Ahmedabad. http://www.elmomachines.com/
- 10. Numeric Power Systems http://www.numericups.com
- 11. Pranshu Electricals http://www.pranshuelec.com/
- 12. Reva Industries http://www.reva.com/
- 13. Rotomag Motors & Controls Pvt. Ltd. http://www.rotomag.com
- 14. Rudrashakti Electronics http://www.rudrashakti.com
- 15. Sanjay Diesels Diesel Generating Sets. http://www.dgsets.com/
- 16. Venus Industrial Corporation http://www.venusind.com/
- 17. A-One Industries. http://www.aoneindustries.com/contactus.html

Consultancy (Electrical Engineering)

- 1. APJ Projects http://www.apjprojects.com
- 2. Consolidated Consultants and Engineers Pvt. Ltd http://www.consolidatedconsultants.com
- 3. DSON Enterprises http://www.dsonenterprises.com
- 4. Eltech Engineers http://www.eltechindia.com/
- 5. John Mech-El Technologies (P) Ltd http://www.johnmech-el.com/
- 6. Mandvi Electric Works http://www.bicserve.com/
- 7. Miraj Instrumentation Services http://www.mirajinstrumentation.com
- 8. PG Associates http://www.engineeringconsultant.in
- 9. Power Gem Engineers Consultants in Power Generation. http://www.powergem.com/
- 10. Secon Engineers http://www.seconindia.com
- 11. Shanti Enterprises Electricals Limited http://www.shantielectricals.com
- 12. Shashi Electricals http://www.shashielectricals.com
- 13. SK Systems http://www.sksystem.com
- 14. Tata Consulting Engineers http://www.tce.co.in
- 15. Nutronics India http://www.nutronicsindia.com/

Electrical appliances

- 1. Ajay Industrial Corporation http://www.ajayindustrial.com/
- 2. Ankit Electricals http://www.ankitelectricals.com
- 3. A.P.C. System & Products Pvt. Ltd http://www.apcsp.com
- 4. Arka Trading & Services http://www.mfdplaza.in
- 5. Bajaj Electricals Ltd Part of Bajaj Group. http://www.bajajelectricals.com/
- 6. Electroil http://www.electroil.com/
- 7. Eveready Industries India Ltd http://www.evereadyindustries.com/
- 8. Graftec india http://graftec.trade-india.com
- 9. Indexelectronics http://www.indexelectronics.com
- 10. Khaitan Group http://www.khaitan.com/
- 11. Lloyd Electric & Engineering Limited http://www.lloydengg.com/
- 12. Modern Electrical Stores http://www.modernelectricalsindia.com/
- 13. Needo electronics and electricals pvt. Ltd. http://www.needoindia.com
- 14. Picasso home products http://www.picassoappliances.com/
- 15. Polor Industries Ltd http://www.polarinc.com/
- 16. Rajshree India Ltd. http://www.rajshreefans.com
- 17. Shilpa Electricals http://www.shilpaelectricals.com/
- 18. Super Impex http://www.superimpex.com
- 19. Tri Star Engineering Industries http://www.tristarengg.com
- 20. Vijay Electricals http://www.vijayelectricalspune.com/
- 21. Vxl Technologies Ltd. http://www.vxldesign.com
- 22. XtremeWorx http://www.xtremeworx.net

Electrical components companies

- 1. Ace Bimetalliks India Pvt. Ltd. http:// www.aceelectricals.com
- 2. Aditron India Pvt. Ltd. (Engineering Division) http://www.aiplen.com
- 3. Admir Ovens http://www.admir.com
- 4. Arvind Anticor Ltd http://www.picklingplant.com
- 5. Asiatic Electronic Industries. http://www.asiatic-india.com/
- 6. Axis Electrical Components India Pvt. Ltd. http://www.axis-india.com
- 7. Balar Marketing Pvt. Ltd http://www.allelectricalproducts.com/
- 8. Bhartia Industries Limited http://www.bchindia.com
- 9. Brass Copper & Alloy (I) Ltd. http://www.hexworldwide.com
- 10. Brightech Valves and Controls Pvt. Ltd. http://www.brightechvalves.com
- 11. Caltech Engineering Services http://www.caltechindia.com
- 12. Color Design India http://www.colordesigntech.com/
- 13. Consult Techniques (I) Pvt. Ltd http://www.consulttechnique.com/
- 14. Deki Electronics Ltd. http://www.dekielectronics.com
- 15. Elpro International Limited http://www.elproindia.com/
- 16. Elymer http://www.elymer.com
- 17. E S Electronics (India) Pvt. Ltd http://www.energysaversindia.com/
- 18. Finetech Engineering Corporation http://www.finetechindia.com
- 19. Gayatri Control, Ahmedabad http://www.gayatricontrol.com/
- 20. Gemscab Industries Ltd http://www.gemscab.com/
- 21. Hallmark Electronics http://www.hallmarkelect.com/
- 22. India International House Ltd http://www.builderhardware.com/
- 23. Jaykrishna magnetics pvt.ltd http://www.jkmagnetics.com
- 24. Leotech Group http://www.leotechindia.com/
- 25. Maxx Mobile Phone Accessories Pvt. Ltd http://www.maxmobile.co.in
- 26. Mehta Engineering Enterprise http://www.mehtaswitch.com

- 27. Mehta Tubes Ltd http://www.mehta-group.com/
- 28. Mellcon Engineers http://www.mellcon.com
- 29. Micromot Controls http://www.micromotcontrols.com
- 30. Muskaan Engineers http://www.electricitysaver.com/
- 31. Neelam Import Pvt. Ltd. http://www.cellking.org
- 32. Onload Gears http://www.onloadgears.com/
- 33. Orton Engineering Pvt. Ltd, Thane http://www.ortonengineering.com/
- 34. Persang Alloy Industries http://www.webmasterindia.com/persangalloy
- 35. PMT Engineers http://www.pmtengineers.com
- 36. Powercap Systems (Madras) Pvt. Ltd http://www.transformersindia.com/
- 37. Powertek Equipment Company http://www.powertekindia.com/
- 38. Pragati Electrocom Pvt. Ltd http://www.pragatielectrocom.com/
- 39. Pran Electronics Pvt. Ltd. http://www.pranelectronics.com
- 40. Precicraft Components India Pvt. Ltd http://www.precicraft.com/
- 41. Prima Automation India Pvt. Ltd http://www.prima-automation.com/
- 42. Rittal India Pvt Ltd http://www.rittal-india.com
- 43. Sanghi Yantra Udyog http://www.skyuindia.com/
- 44. SKN Bentex Group of Companies. http://www.sknbentex.com/
- 45. South India Industrial Suppliers http://siis-india.com/bus_bar_support.html
- 46. Square Automation Pvt. Ltd http://www.squareautomation.com/
- 47. Sudhir Switchgears http://www.sudhirswitchgears.com
- 48. Syntron Controls http://www.syntron-controls.com
- 49. Torque Master Tools Pvt. Ltd http://www.torquemasterindia.com/
- 50. United Core http://www.unitedcores.com/
- 51. Utiliti Controls http://www.utiliticontrols.com/
- 52. valrack modular systems pvt.ltd http://www.valrack.com
- 53. Wavetronics http://www.wavetronicsindia.com
- 54. Rane Holdings Limited http://www.rane.co.in

Lighting & luminaries

- 1. A.K. Electricals http://www.akelectricals.com/
- 2. APCO India http://www.indiabizclub.net/Electrical/APCO_INDIA.html
- 3. Aquascape engineers http://www.fountainsnozzles.com
- 4. Arihant Enterprises : http://www.arihantsecurityindia.com/
- 5. Atlas Electricals www.indiabizclub.net/Electrical/ATLAS_ELECTRICALS.html
- 6. Baliga Lighting http://www.baliga.com/
- 7. Crompton Greaves Limited. http://www.cglonline.com/
- 8. Decon Lighting http://deconlighting.com
- 9. GE Lighting India http://www.gelighting.com/india/index.html
- 10. Jain Industrial Lighting Corporation http://www.indiamart.com/jilco/
- 11. Jayanta Lamp Industries Pvt.Ltd : http://www.jayantagroup.com
- 12. Kuber Lighting Pvt Ltd http://www.kuber.biz
- 13. Litray Lighting : http://www.litraylighting.com/
- 14. Mindscreen Pvt. Ltd. http://www.mindscreenfilms.com/
- 15. Peralites http://www.indiabizclub.net/Electrical/PEARLITES.html
- 16. Sam International http://www.indiamart.com/
- 17. Shyam Electricals http://www.shyamelectricals.com/
- 18. Hpl Electric & Power Pvt.Ltd http://www.hplindia.com

Power Generation

- 1. Advance Engineering Company http://www.advanceengineering.com/
- 2. APGENCO http://www.apgenco.com/

- 3. Birla Power Solutions Limited http://www.birlapower.com
- 4. Dyna Hitech Power Systems Ltd http://www.dynahitech.com
- 5. Essar Group http://www.essar.com/Group/group.asp
- 6. Essar Power Ltd. http://www.essar.com/
- 7. Jindal Steel & Power Ltd. http://www.jindalsteelpower.com
- 8. Kaiga Atomic Power Station http://www.npcil.org/docs/kaigaps.htm
- 9. Kakrapar Atomic Power Station http://www.npcil.org/docs/kaps.htm
- 10. Kirloskar Electric Co http://www.kirloskar-electric.com/
- 11. Lanco Industries http://www.lancogroup.com/groups/kpower.html
- 12. Madras Atomic Power Station (MAPS) http://www.npcil.org/
- 13. Magnum Power Generation Ltd http://www.magnumgrouponline.com/power/
- 14. Narora Atomic Power Station http://www.npcil.org/docs/naps.htm
- 15. National Thermal Power Corporation (NTPC) http://www.ntpc.co.in
- 16. NEPC India Ltd http://www.nepcindia.com
- 17. PTC India http://www.ptcindia.com
- 18. Rajasthan Atomic Power Station (RAPS) http://www.npcilraps.com/
- 19. Rajasthan Renewable Energy Corporation Limited (RRECL) http://www.rrecl.com/
- 20. Reliance Energy http://www.rel.co.in
- 21. Tarapur Atomic Power Station http://www.npcil.org/docs/taps.htm
- 22. Tata Electric Companies http://www.tata.com
- 23. Tata Power http://www.tatapower.com/
- 24. Techno Instrument India Pvt.Ltd web site url: http://www.tiiindia.com/
- 25. Torrent Power web site url: http://www.torrentpower.com/
- 26. Uttar Pradesh Power Corporation Ltd http://www.uppcl.org/
- 27. ABB Ltd www.abb.co.in/
- 28. Adani Power Ltd www.adanipower.com/
- 29. Aplab Ltd www.aplab.com/
- 30. BF Utilities Ltd www.bfutilities.com/
- 31. CESC Ltd. www.cescltd.com/
- 32. CMI Ltd. www.cmilimited.com.au/
- 33. DLF Power Limited www.eipowertech.com/dlf_power_limited.htm
- 34. DPSC Ltd www.dpscl.com/
- 35. Energy Development Company Ltd www.energy.com.ph/
- 36. Entegra Ltd www.entegra.co.in/
- 37. GMR Infrastructure Ltd www.gmrgroup.in/
- 38. Gujarat Industries Power Company Ltd www.gipcl.com/
- 39. GVK Power & Infrastructure Ltd www.gvk.com/
- 40. HBL Power Systems Ltd www.hbl.in/
- 41. Indowind Energy Ltd www.indowind.com/
- 42. Indo power projects Ltd www.indopowerprojects.in/
- 43. Jaiprakash Power Ventures Ltd www.jppowerventures.com/
- 44. Kalpataru Power Transmission Ltd www.kalpatarupower.com/
- 45. KSK Energy Ventures Ltd www.ksk.co.in/
- 46. National Wind & Power Corpn. Ltd www.nationalwind.com/
- 47. Neyveli Lignite Corpn. Ltd www.nlcindia.com/
- 48. NHPC Ltd. www.nhpcindia.com/
- 49. NTPC Limited www.ntpc.co.in/
- 50. Power Grid Corpn. Of India Ltd www.powergridindia.com/
- 51. PTC India Ltd www.ptcindia.com/
- 52. Reliance Power Ltd www.reliancepower.co.in/

- 53. Savant Infocomm Ltd www.savant-infocomm.com/
- 54. Sun Source (India) Ltd www.sunsource.in/about_us.htm
- 55. Suryachakra Power Corpn. Ltd www.suryachakra.in/
- 56. Suzlon Energy Limited www.suzlon.com/

Electric wires & Cables

- 1. Aksh Optifibre Limited http://www.akshoptifibre.com/
- 2. Anant Distributors Private Ltd. http://www.proflexcable.com/
- 3. Brimson Cables Private Ltd http://www.brimsoncable.com/
- 4. Capital Cables India Limited http://www.indiantrade.com/cci/
- 5. Colt Cables Private Limited http://www.coltcables.com/
- 6. Cords Cable Industries Ltd http://www.cordscable.com/
- 7. Delton Cables Limited http://www.deltoncables.com/
- 8. Fort Gloster Industries Limited http://www.glostercables.com/
- 9. Kaydour Cables India http://www.kaydourcables.com
- 10. KEI Industries Limited http://www.kei-ind.com/
- 11. Lapp India http://www.lappindia.com/
- 12. National Cable Industries http://www.nationalcables.com/
- 13. Navinbhai Cables Private Ltd http://www.ncplindia.com/
- 14. Neolex Cables http://www.neolexcable.com/
- 15. North Eastern Cables Private Ltd //www.khetangroup.com/
- 16. Novoflex Marketing Private Limited. http://www.novoflexgroup.com/
- 17. Polycab Wires Private Limited http://www.polycab.com/
- 18. Q-Flex Cables Limited http://www.qflexcable.com/
- 19. Ravin Cables limited Primecab brand of cables. http://www.primecab.com/
- 20. Relemac India http://www.relemacindia.com
- 21. RollRing Industries Calicut, Kerala. http://www.rollring.com/
- 22. Samdaria Electricals http://www.samdariaelectricals.co.in/
- 23. Satish Enterprises http://www.satishenterprise.com/
- 24. Shree Nakoda Cables Private Limited. http://www.nakodacables.com/
- 25. Skytone Electricals (India) http://www.skytonecables.com/
- 26. Surbhi Cables Industries Private Limited. http://www.indiamart.com/surbhi/
- 27. Surbhi Telelink Pvt. Ltd http://www.surbhiindia.com/
- 28. Torrent Cables Ltd http://www.torrentcables.com/
- 29. Universal Cables http://www.universalcablesltd.com
- 30. Usha Martin http://www.ushamartin.com
- 31. Weather Crafts Ltd http://www.weathercraft.com/
- 32. Finolex Cables Limited http://www.finolex.com

Electrical exporters

- 1. Arbariya steels http://www.arbariya.com/
- 2. Bajaj International Pvt. Ltd. http://www.bajajinternational.com/
- 3. Biax http://www.biaxmetals.com/
- 4. Brightech Valves and Controls Pvt Ltd http://www.brightechvalves.com
- 5. Dynamic Scaffolding & Equipment Co http://www.dynamicscaffolding.com/
- 6. Excel Metal And Engg. Industries http://www.excelmetal.net
- 7. Impex Trading Company http://www.impextradingco.com
- 8. Miltop Trading Company http://www.miltop.com/
- 9. Om(India)Exports http://omindiaexpo.com
- 10. Oriental Export Corporation http://www.indialinks.com/oriental/
- 11. Sevana Electrical Group http://www.sevana.com/
- 12. Veejay Lakshmi Engineering Works Limited http://www.veejaylakshmi.com

- 13. Vishal Electromag Industries http://www.vishalmotor.com
- 14. Vaibhav Electricals http://www.vaibhavelectricals.com
- 15. Industrial Forging Industries http://www.ifi-india.net/
- 16. Imperial Brass Component http://electronics-electrical.exportersindia.com
- 17. M/s Horizon Exports http://www.horizonexport.net
- 18. Golden Crest Marketing Network Pvt. Ltd. http://www.aceenergy.co.in/
- 19. Shree Krishna Enterprises http://www.shreekrishnaenterprises.co.in/
- 20. Sahiba International Trading Company http://www.sahibainternational.com
- 21. Pushpak Metals web site url: http://www.pushpakmetals.com/
- 22. IEEMA http://www.ieema.org
- 23. ELSTER METERING (P) LTD http://www.elstermetering.com/
- 24. Shivam Electronics http://www.shivamelectronics.com
- 25. SUBRTO http://www.subrtoburnishing.com/
- 26. Unitek Engineers http://www.unitekengineers.com
- 27. Euro Technologies http://www.eurotapes.in/

Measurements & Instrumentation

- 1. Active Control Pvt Ltd http://www.indiamart.com/activecontrols/
- 2. Autometers Alliance Limited. http://www.autometers.com/
- 3. EIP Bulk Control Pvt Ltd http://www.eipbulkcontrols.com/
- 4. IMP Power Limited http://www.imp-power.com/
- 5. Instruments International http://www.indorecity.com/ii/index.html
- 6. Kanji Precision Works http://www.kanjimeters.com
- 7. Mittal Enterprises http://www.indiamart.com/mittalenterprises/
- 8. Modsonic http://www.modsonic.com/
- 9. Nippon Instruments http://www.nipponinstruments.com/
- 10. Poonawala Electro Weigh http://www.peweigh.com
- 11. Prok Devices http://www.prokdvs.com
- 12. Shanti Instruments http://www.shanti-instruments.com
- 13. Texlab Industries http://www.texlabindia.com
- 14. Vasavi Electronics http://www.vasavi.com
- 15. VPL Infotech http://vplinf.com

Power Distribution

- 1. Areva T&D India http://www.areva-td.co.in/
- 2. BSES Yamuna Power Ltd and BSES Rajdhani Power Ltd. http://www.bsesdelhi.com/
- 3. Central Power Distribution Company of Andhra Pradesh Limited http://www.apcentralpower.com/
- 4. CESC Limited http://www.cescltd.com
- 5. Eastern Power Distribution Company of Andhra Pradesh Limited http://www.apeasternpower.com/
- 6. Elpro International Limited http://www.elproindia.com/
- 7. Gujarat Electricity Board http://www.gseb.com
- 8. Haryana Power Utilities http://www.haryanaelectricity.com/
- 9. Hubli Electricity Supply Company Limited (HESCOM) http://www.hescom.org/
- 10. Maharashtra State Electricity Distribution Company Limited http://www.mahadiscom.in
- 11. Natinal Hydroelectric Power Corporation of India http://www.nhpcindia.com
- 12. Noida Power Company Ltd http://www.noidapower.com
- 13. North Delhi Power Limited http://www.ndplonline.com/
- 14. Power Grid Corporation Of India http://www.powergridindia.com
- 15. Southern Power Distribution of Andhra Pradesh http://www.apspdcl.in
- 16. Transmission Corporation of Andhra Pradesh (AP TRANSO) http://www.aptranscorp.com/

Transformers

- 1. Emco Limited http://www.emcoindia.com
- 2. Golecha Electro Stampings. http://www.golecha.com/
- 3. Intaf India http://www.intafindia.com/
- 4. Kappa Electricals Private Ltd http://www.kappaelectricals.com/
- 5. Kotsons Transformers http://www.kotsons.com/
- 6. Mahindra Electrical Works http://www.mewindia.com
- 7. Marson's Electricals http://www.marsonselectricals.com/
- 8. P.M. Electronics Limited. http://www.indiamart.com/pme/
- 9. Prismatic India http://www.wind-it.com/
- 10. Raksan Transformers Private Ltd http://www.raksantransformers.com/
- 11. Roland Electronics and devices Private Ltd. http://www.redpl.com/
- 12. Sai Electricals http://www.saielectricals.com/
- 13. Tesla Transformers Limited http://www.teslatransformers.com/
- 14. Transformers and Electricals Kerala Limited. http://www.telk.com/
- 15. Transformers and Rectifiers (India) Ltd. http://www.jmtril.com
- 16. T.S. International http://www.transformers-reactors.com

Green Energy Companies in India

1. **Suzion Energy:** Suzion is of course the first company that comes to mind. They are one of the leading wind energy companies in India are one of the better known alternative energy companies in India. Here are some details from their website.

Conceived in 1995 with just 20 people, Suzlon is now a leading wind power company with:

- Over 16,000 people in 25 countries
- Operations across the Americas, Asia, Australia and Europe
- Fully integrated supply chain with manufacturing facilities in three continents
- Sophisticated R&D capabilities in Belgium, Denmark, Germany, India and The Netherlands
- Market leader in Asia, Suzlon Market Share (Combined with REpower) rose to 9.8% thereby making Suzlon 3rd * largest wind turbine manufacturing company in the world.
- 2. Orient Green Power Limited: Primarily engaged in the Wind and Biomass energy space. Currently wind constitutes the majority of their energy portfolio, so this is another one of India's wind energy companies. As of March 31, 2010, their total portfolio of operating projects included 193.1 MW of aggregate installed capacity, which comprised 152.6 MW of wind energy projects and 40.5 MW of biomass projects. Their portfolio of committed and development projects included approximately 815.5 MW of prospective capacity, which comprised an estimated 622.0 MW of wind energy projects, 178.5 MW of biomass projects and a 15.0 MW small hydroelectric project
- 3. Indowind Energy Limited: Indowind Energy Limited is also a wind energy company that develops wind farms for sale, manages the wind assets, and generates green power for sale to utilities and corporates. Turnkey implementation of Wind Power Projects, from concept to commissioning. Wind Asset Management Solution for installed assets, including operations, billing, collection of revenue to project customers. Supply of Green Power to Customers. CERs (Carbon Credit) Sales and Trading.

- 4. Suryachakra Power Corporation Limited: SPCL is the flagship company of Suryachakra Group with interests in Power generation renewable energy (biomass, Solar, hydro, Wind) and Clean Technology / Ultra Super Critical Thermal Power Plants (coal, Gas), Engineering Consultancy and Urban infrastructure development activities. Suryachakra Power Corporation Limited has established 3 wholly owned subsidiaries for setting up of renewable energy (biomass) power projects and also acquired stake in Sri Panchajanya Power Private limited, which was setting up a 10 MW Biomass Power Plant at Hingoli, Maharashtra.
- 5. **NEPC India:** This is a Public Limited Company promoted by the Khemka Group with the primary objective of promoting wind energy. This successful Group has a multi crore turnover from diversified activities in the field of Power Generation from Wind Energy and manufacture and marketing of Wind Turbine Generator (a renewable energy device).
- 6. **Azure Power:** Azure Power is the green energy space as it is one of the solar energy companies in India. It is a solar power company, and they are supplying power to 20,000 people in 32 villages in Punjab.
- 7. AuroMira Energy: Auro Mira is also a green technology energy company that is private, and present in the Biomass, Small Hydel and Wind Sectors. It plans to develop over 1000 MW capacity by 2012. AME is presently focusing in Biomass, Small Hydro and Wind Sectors. AME plans to invest \$ 900 Million to develop, own and operate over 1000 MW in clean energy in addition to WTG manufacture and to develop over 15000 acres of energy plantation in the next five years. AME intends to foray into other clean energy technologies, solar, bio-diesel etc. in the future.
- Husk Power Systems: This is truly an alternate energy company which owns and operates 35-100 kW "mini power-plants" that use discarded rice husks to deliver electricity to off-grid villages in the Indian "Rice Belt
- RRB Energy Limited: This company is in the field of Wind Power Generation, and is an ISO 9001:2008 and ISO 14001:2004 certified Company. RRBEL is also an Independent Power Producer having established wind farms of aggregate megawatt capacity.
- 10. **Moser Baer Solar Limited:** This is a subsidiary of Moser Baer that is one of the solar energy companies as well. The Group's photovoltaic manufacturing business was established between 2005 and 2007 with the primary objective of providing reliable solar power as a competitive non-subsidized source of energy.

Internationally renowned MNC's to offer electrical jobs

Cisco, Hewlett Packard, Intel, AMD, IBM, Ford, General Electric, General Motors, Lockheed Martin, Lucent Technologies, Moog, Micron, Motorola, Nokia, Qualcomm, Rockwell, Sun Microsystems, Atto Technology, MTI and Texas Instruments.

Top core companies in India to offer electrical jobs

- 1. Bharat Sanchar Nigam Limited
- 2. Tata Consultancy Services
- 3. Bharti Airtel Limited
- 4. Wipro Ltd
- 5. Infosys Technologies Limited
- 6. Hewlett-Packard India
- 7. HCL Infosystems Limited
- 8. Reliance Communications Ltd
- 9. LG Electronics India Pvt Ltd
- 10. IBM India Pvt Ltd
- 11. Videocon Industries Ltd
- 12. HCL Technologies Limited
- 13. Satyam Computer Services Ltd
- 14. Siemens Ltd.
- 15. Samsung India Electronics Pvt. Ltd.
- 16. Mahanagar Telephone Nigam Ltd
- 17. Redington (India) Limited
- 18. Cognizant Technology Solutions
- 19. Idea Cellular Ltd
- 20. Videsh Sanchar Nigam Limited

Exclusive Government jobs for Electrical Engineers

- 1. ISRO
- 2. DRDO
- 3. BEL
- 4. BHEL
- 5. GAIL
- 6. SAIL
- 7. HAL
- 8. HPCL
- 9. NTPC
- 10. ONGC
- 11. IOCL
- 12. RRB
- 13. ECIL
- 14. APGENCO
- 15. APTRANSCO

Ref: http://www.regencyengg.com/eee_job_offer.html

K.L.N. COLLEGE OF ENGINEERING. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING <u>Circular</u>

Ref: KLNCE/EEE/TPO/2017

Date: 04/05/2017

Training plan for the Academic Year 2017-2018

Year/TPO/ Department	ТРО	DEPARTMENT	STAFF
Activity			
First Year	Path Transformations, ICE(Initiate Create Expose)	C,C++ Programming (Application Oriented Programming Skill is must) -3Days, BEC Training, Tell About Yourself TCS Campus Commune Registration(Test Portal) Smart India Hackathalon Code Vita, Enginx Awareness on GATE,TANCET, GMAT, IES, IAS, BOAT, TOEFL, NTPC, ISRO Attitude- Behavior-Dress coding- Personality-Hairstyle-Certificates Filing Awareness on Profile of the Core and IT Companies Direct Placement through Company Webportal Awareness on Bond Rules Real Time Projects	R.Divya M.S.C.Sujitha Mr. S. Rajalingam
Second Year	Level-I: Aptitude Training/ Verbal Reasoning/Quantitative Aptitude	LABVIEW, Core1, Core2, C, C++ Programming (Application Oriented Programming Skill is must), MOCK Awareness, MOCK GD, Tell About Yourself, Core Training-Data Pattern- Syllabus available-EDC, LIC, DLC TCS Campus Commune Registration (Test Portal) Project Contest Smart India Hackathalon Code Vita, Enginx CCNA Certification Awareness on GATE, TANCET, GMAT, IES, IAS, BOAT, TOEFL, NTPC, ISRO Attitude- Behavior-Dress coding- Personality-Hairstyle-Certificates Filing Direct Placement through Company Webportal Awareness on Bond Rules Real Time Projects	M.JeyaMurugan S.Manoharan Dr. M. Mahalakshmi Mr. S. Rajalingam
Third Year	Level-II: Aptitude Training/ Verbal Reasoning/Quantitative Aptitude AMCAT Specific Training(Aptitude, Core,	JAVA Programming (10 Days-Even Semester) C,C++ Programming (Application Oriented Programming Skill is must) Texas Instruments (5 Days-Odd Semester)[Java Certification must for ZOHO, MindTree, IVTL, Salary: 6.5	Dr. S. Venkatesan, Dr. K. Gnanambal, Dr. S. M. Kannan, Mr. A. Marimuthu, M. Ganeshkumari,

	Longuage Svillature	Labbal	
	Language-Syllabus	Lakhs]	
	available), AMCAT Exam(4	MOCK Awareness, MOCK GD, Tell About	
	Hrs Exam-2 times)	Yourself	
	Resume Preparation	Training-Data Pattern- Syllabus available-	
	Email writing	EDC,LIC,DLC	
	NIIT Aptitude Exam	TCS Campus Commune Registration(Test	
	TCS Webinar	Portal)	
		Project Contest	
		Smart India Hackathalon	
		Code Vita, Enginx	
		CCNA Certification	
		Awareness on GATE, TANCET, GMAT,	
		IES, IAS, BOAT, TOEFL, NTPC, ISRO	
		Attitude- Behavior-Dress coding-	
		Personality-Hairstyle-Certificates Filing	
		Direct Placement through Company	
		Webportal	
		Awareness on Bond Rules	
		Real Time Projects	
		IoT Techniques,	Dr. A.S.S. Murugan
		C,C++ Programming(Application Oriented	M. Jegadeesan
		Programming Skill is must)	R. Jeyarohini
		MOCK GD	A. Manoj
	Level-III: Aptitude Training/	Training-Data Pattern- Syllabus available-	N.Vimal Radha Vignesh
	Verbal	EDC,LIC,DLC,VLSI,MPMC,ES,DSP	
	Reasoning/Quantitative	Jasmin InfoTech- C, C++,MPMC,DSP-	
	Aptitude	Application Oriented	
	Company Specific Training	CADENCE – CT(Salary: 8 Lakhs)	
	Programme	TESSOLVE- EDC, LIC, DLC	
	AMCAT Exam(4 Hrs Exam-	(Semiconductor Based)	
	2 times)	LABVIEW- CLAD Certification	
Final Year	Resume Preparation, Email	TCS Campus Commune Registration(Test	
	writing	Portal)	
	MOCK Group Discussion,	Project Contest	
	MOCK Interview	Smart India Hackathalon	
	Awareness Programme for	Code Vita, Enginx	
	Higher Education-Abroad	CCNA Certification, Oracle Certification	
	TCS Webinar	Awareness on GATE, TANCET, GMAT,	
		IES, IAS, BOAT, TOEFL, NTPC, ISRO	
		Attitude-Behavior-Dress coding-	
		Personality-Hairstyle-Certificates Filing	
		Direct Placement through Company	
		Webportal, Awareness on Bond Rules	
		Real Time Projects	

www.guvi.com - Real Time problem and Programming Skill

ANNA UNIVERSITY

CENTRE FOR UNIVERSITY INDUSTRY COLLABORATION (CUIC)

A READY RECKONER FOR ENHANCING PLACEMENT ACTIVITIES

Dr. T .Thyagarajan, Director- CUIC

ROLES AND RESPONSIBILITIES OF PLACEMENT REPRESENTATIVES

- Collect list of HR contact details through your friends / relatives / Newspaper / Faculty members / Seniors / Alumni
- Pass on the HR Contact details to Placement Officer for sending official invitations
- Ensure Placement Officer contact details in all the Department Brochures, to have single point contact
- Keep the hard and soft copies of Curriculum and Syllabus
- Keep the contact details (Email, Landline No. & Mobile No.) of all your classmates
- Keep the complete details about each student (SSLC, HSC, Semester wise GPA, CGPA, DOB, Community, History & Current Arrears)
- Keep the contact details of other Placement Representatives
- Generate comprehensive Question Bank (Both Technical and Non-Technical)
- Collect Aptitude Questions / GD Topics / Interview Questions to create Question Bank
- Give training to the needy students
- Avoid spreading Rumors / False / Assumed information (This will lead to black listing)
- Avoid accepting false information / Track records from students (This will lead to rejection of offer)
- Avoid arguing with company HRs about previous year's branch preferences

TIPS TO FACE INTERVIEWS

- Maintain Professional Ethics and Moral Standards
- Read Frequently Asked Questions by interviewers and prepare the answers and practice them
- Prepare a Comprehensive Resume
- Practice with Mock Aptitude Test / Mock GD / Mock Interviewetc.,
- Prepare well in fundamental & core subjects of respective branches
- Update database after declaration of revaluation / Aarrear result
- View the placement Notice Board regularly
- As for as possible change of contact details should be avoided
- Visit the company's website before attending the Pre Placement Talk (PPT) to get clear idea
- Avoid Wearing Jeans / T-shirts/ Cheppal / Half sleeves
- Be punctual for PPT as well as for Test / Interview
- Avoid standing outside or near the PPT hall
- Occupy first benches also, during the PPT
- Maintain Gender separation during the PPT
- Maintain discipline during PPT
- Avoid coming late to the PPT/test/interview
- Ask only relevant / valid questions during the PPT
- Carry Pen, Pencil, Eraser, Passport Size Photograph etc., for the test
- Avoid contacting the HR directly. It should be through CUIC only.
- Carry Resume / Copy of Mark Sheets / Community / Co-curricular / Extra-curricular Certificate etc for the interview
- Bring OBC Certificate for PSU interview
- Bring doctor certificate for differently abled physique
- Inform at the beginning itself about colour blindness, hearing disorder to avoid disqualification at the end.
- Attend the interview with clean dress (tucked-in) and neatly shaved to maintain dignity and decorum
- Wish the interviewer while entering the room. Thank the interviewer before leaving the room
- During the interview, relax and avoid showing your nervousness obvious
- Speak loudly, clearly; sit up straight; try to look at the interviewer's eyes when you speak to him/her
- Be honest in your approach
- Keep your answers brief and to the point.
- Do not give 'YES' or 'NO' replies.
- Don't discuss your personal difficulties
- Show your enthusiasm and willingness
- Exhibit your skills and abilities.

- Avoid passing bad comments /Remarks about the College/ University/ Staff during the interview
- Prepare in advance, the questions you want to ask about the job and company
- Be available till the announcement of results
- Maintain silence during announcements of results
- Do not exhibit bad mannerism during the placement activity

FREQUENTLY ASKED QUESTIONS (FAQ)

- Tell me about yourself
- What are your long range goals, ambitions, future plans?
- What do you want to be doing 5 or 10 years from now?
- How do you feel that you can contribute to this job?
- What are your hobbies?
- What are your strengths? Your weaknesses?
- What are your big accomplishments?
- What are your special abilities?
- Why you think that you are suitable for this kind of job?
- What is your career goal?
- What do you know about our company?
- Why are you applying for a job with us?
- What salary do you expect?
- Do you have any plans to go back to school?
- What kind of job profile you enjoy the most, the least and why?
- I have interviewed others for this job, why should I give you the job?
- Would you be willing to take an aptitude test?
- Can you tell me anything about yourself that you think I might want to know?
- What is the lowest salary you would accept?
- Can you handle criticism? How do you deal with it?
- Do you have any questions?

H.R. EXPECTATIONS

- Sincerity and honesty in the answers
- Attentiveness in listening to the questions
- Body language: gesture, posture, eye contact and confidence level
- Stress handling capability
- Positive approach in answering the questions
- Exhibition of skills, accomplishments and talents
- Enthusiasm and motivation level
- Command over communication skills
- Willingness and positive approach
- Exhibition of talents and accomplishments

POINTS DECIDED BY THE ORGANISATION

- Interview time and venue
- Decision on allowing identical branches
- Execution of Bond
- Change in eligibility criteria
- Place of work
- Percentage cut-off/ history of arrears / standing arrears
- Postponement of dates/ cancellation
- The number of recruits, on-board date

USEFUL WEBSITES FOR APTITUDE, GD, TECHNICAL & HR INTERVIEW

http://www.indiabix.com http://www.freshersworld.com http://www.placementpapers.net http://www.allinterview.com http://www.geekinterview.com http://www.careersvalley.com http://www.sampleplacementpapers.com http://www.chetanasinterview.com http://www.ittestpapers.com http://www.indianfresher.com http://www.freeplacementpapers.com http://www.educationindiaworld.com http://www.jobsnresults.com http://www.psychometric-success.com http://testfunda.com http:/www.test4free.com http://www.placementexpress.com

TECHNICAL

http://www.mechanicalengineeringblog.com http://www.indiabix.com

USEFUL WEBSITES FOR ENGLISH COMMUNICATION

http://www.nonstopenglish.com http://www.talkenglish.com http://www.freeenglishnow.com http://www.ego4u.com http://www.focusenglish.com http://www.bbc.co.uk/worldservice/learningenglish http://www.englishclub.com http://www.easyenglish.com http://learnenglish.britishcouncil.org englishbee.net http://learnenglish.britishcouncil.org englishbee.net http://www.english4today.com/free_content.cfm http://www.english4today.com/free_content.cfm http://www.english-the-international-language.com http://www.teachingengtish.org.uk http://esl.about.com http://www.learnenglish.de http://www.busuu.com http://freeesl.com

'FACTS' TO PERFORM WELL IN THE PLACEMENTS

F	-	Clear the subjects in F irst attempt
	-	Learn Foreign Language (German, Japanese, French, Chinese)
A	-	Have right Attitude
С	-	Have good Communication Skills
		Maintain a CGPA above 7.5
Т	-	Think Positive
		Develop creative Thinking
S	-	Be Sagacious. Express your wisdom and Exhibit your Talents

K.L.N. COLLEGE OF ENGINEERING POTTAPALAYAM - 630 612 (11KM from Madurai City) SIVAGANGAI DISTRICT, TAMILNADU, INDIA (Sponsored by K.L.N. Sourashtra College of Engineering Council) Approved by AICTE, New Delhi

All UG courses are permanently Affiliated to Anna University, Chennai Approved Research Centres for Mechanical, EEE, ECE, CSE and MBA by Anna University Accredited by NBA up to 30.06.2019, New Delhi for B.E. – Mechanical, EEE, CSE, B.Tech – IT & MCA An ISO 9001:2015 Certified Institution, Sourashtra Linguistic Minority Institution Ph: 0452 – 6562171 & 2, 0452 – 2090971 & 2, Fax: 0452 – 2090070, Email – info@klnce.edu

COURSES OFFERED

UG COURSES - B.E. / B.TECH

- 1. Mechanical Engineering (Accredited by NBA)
- 2. Electrical & Electronics Engineering (Accredited by NBA)
- 3. Electronics & Communication Engineering
- 4. Computer Science & Engineering (Accredited by NBA)
- 5. Information Technology (Accredited by NBA)
- 6. Automobile Engineering
- 7. Electronics & Instrumentation Engineering

PG COURSES

- 1. Master of Computer Applications (Accredited by NBA)
- 2. Master of Business Administration
- 3. M.E. CAD / CAM
- 4. M.E. Communication Systems
- 5. M.E. Power Systems Engineering
- 6. M.E. Computer Science & Engineering
- 7. M.E. Computer Science & Engineering (with Specialization in Networks)